Tangentni štirikotnik
Tangéntni štirikótnik je v ravninski geometriji konveksni štirikotnik za katerega obstaja krožnica, ki se dotika vseh njegovih stranic, oziroma, ki ima včrtano krožnico. Ime tangentni izhaja iz značilnosti, da je vsaka njegova stranica tangentna na eno včrtano krožnico.
Ena od osnovnih značilnosti tangentnega štirikotnika je, da je štirikotnik tangentni, če in samo če se simetrale njegovih notranjih kotov sekajo v eni točki.
Splošne značilnostiUredi
- vsota nasprotnih stranic je enaka in velja:
- Tako velja:
- kjer je s polobseg tangentnega štirikotnika.
- diagonali konveksnega štirikotnika razdelita štirikotnik na štiri trikotnike. Za tangentni štirikotnik velja:
- kjer so polmeri pripadajočih včrtanih krožnic štirih trikotnikov.[1]
Posebni primeriUredi
Posebni primeri tangentnih štirikotnikov so vsi deltoidi, na primer romb in kvadrat. Vsi deltoidi so ravno tisti tangentni štirikotniki, ki so tudi ortodiagonalni.[2] Posebni primer tangentnega štirikotnika je tudi tangentni trapez. Štirikotniki, ki so hkrati tangentni in tetivni, se imenujejo bicentrični štirikotniki ali tetivnotangentni štirikotniki.
PloščinaUredi
Ploščina tangentnega štirikotnika je:
kjer je r polmer včrtanega krožnice. Po Bretschneiderjevi formuli velja:
kjer sta in diagonali tangentnega štirikotnika.
Glej tudiUredi
SkliciUredi
ViriUredi
- Chao, Wu Wei; Simeonov, Plamen (2000). »When quadrilaterals have inscribed circles (solution to problem 10698)«. American Mathematical Monthly. Zv. 107, št. 7. str. 657–658. doi:10.2307/2589133.
- Josefsson, Martin (2010). »Calculations concerning the tangent lengths and tangency chords of a tangential quadrilateral« (PDF). Forum Geometricorum. Zv. 10. str. 119–130.
- Radić, Mirko (1999). »Some relations and properties concerning tangential polygons« (PDF). Mathematical Communications (v angleščini). Št. 4. Univerza v Osijeku. str. 197–206. ISSN 1331-0623. Pridobljeno 5. oktobra 2013.