Vektorski potencial

vektorsko polje, katerega rotor je dano vektorsko polje

Véktorski potenciál je v vektorski analizi vektorsko polje, katerega rotor je dano vektorsko polje. To je analogno skalarnemu potencialu, ki je skalarno polje, katerega gradient je dano skalarno polje.

Formalno je glede na dano vektorsko polje vektorski potencial vektorsko polje tako, da velja:

Posledica

uredi

Če vektorsko polje   dopušča vektorski potencial  , potem iz enakosti:

 

(divergenca rotorja je enaka nič) sledi:

 

kar pomeni, da mora biti   solenoidalno vektorsko polje.

Izrek

uredi

Naj je:

 

solenoidalno vektorsko polje, ki je dvakrat zvezno odvedljivo. Privzame se, da   narašča vsaj tako hitro kot   za  . Naj je po definiciji:

 

Potem je   vektorski potencial za  , oziroma:

 

Tu je   rotor za spremenljivko  . Če se zamenja   ( ) za gostoto toka   retardiranega potenciala, se dobi ta formula. Z drugimi besedami,   ustreza jakosti magnetnega polja  .

Integralno domeno se lahko omeji na katero koli enojno povezano območje  . To pomeni, da je   spodaj tudi vektorski potencial  :

 

Posplošitev tega izreka je Helmholtzev razstavitveni izrek, ki pravi, da je mogoče vsako vektorsko polje razstaviti kot vsoto solenoidalnega vektorskega polja in potencialnega vektorskega polja.

Po analogiji z Biot-Savartovim zakonom se   prav tako kvalificira kot vektorski potencial za  :

 

Če se zamenja   (gostota električnega toka) za   in   (jakost magnetnega polja) za  , se dobi Biot-Savartov zakon.

Naj je   in naj je   zvezdasta domena s središčem na  , potem je s prevajanjem Poincaréjeve leme za diferencialne forme v svet vektorskih polj, tudi   vektorski potencial za  :

 

Needinstvenost

uredi

Vektorski potencial, ki ga dopušča solenoidalno polje, ni edinstven. Če je   vektorski potencial za  , potem je vektorski potencial tudi:

 

kjer je   zvezno odvedljiva skalarna funkcija. To izhaja iz dejstva, da je rotor gradienta poljubnega skalarnega polja   polje ničelnih vektorjev:

 

kar izhaja iz antisimetričnosti v definiciji rotorja in simetrije drugih odvodov.

Ta needinstvenost vodi do prostostne stopnje v formulaciji elektrodinamike ali umerilne svobode, in zahteva izbiro umeritve.

Elektromagnetno polje

uredi

Električni potencial   je skalarna količina. Njegov negativni gradient je enak jakosti električnega polja  :

 

Rotor magnetnega vektorskega potenciala   je enak gostoti magnetnega polja  :

 

Kadar ni prostih tokov ( ), se lahko v elektrostatiki definira magnetni skalarni potencial  :

 

V okviru posebne teorije relativnosti je naravno magnetni vektorski potencial združiti z električnim (skalarnim) potencialom v elektromagnetni potencial(elektromagnetni) četverec potenciala. Ta za elektromagnetno polje igra vlogo vektorskega potenciala, za gravitacijsko polje pa ga igra na primer Lanczosev potencial.

Glej tudi

uredi

Sklici

uredi
  • Cheng, David Keun (1993), Fundamentals of Engineering Electromagnetics, Reading, Massachusetts: Addison-Wesley, COBISS 14947077, ISBN 0-201-56611-7