Permafrost

Permafrost (rusko: merzlota) so trajno zamrznjena tla, kar je posledica celoletnih nizkih temperatur.

Permafrost glede na trajanje in vsebnost ledu

Večina permafrosta se nahaja v območjih z veliko zemljepisno širino (blizu polov), pojavlja pa se tudi v visokogorju. Permafrost je prisoten skoraj na polovici (47 %) površja Rusije.

Na zamrznjeni podlagi pogosto nastanejo močvirnata, za kmetijstvo neuporabna tla.

Nekatere najpogostejše lokacije permafrosta so na severni polobli. Skoraj četrtino severne poloble pokriva permafrost, vključno z 85% Aljaske, Grenlandije, Kanade in Sibirije. Lahko se nahaja tudi na gorskih vrhovih na južni polobli. Permafrost se pogosto pojavlja v ledu na tleh, lahko pa je tudi v neporozni podlagi. Permafrost nastane iz ledu, ki vsebuje različne vrste tal, peska in kamnin v kombinaciji.

Študija in razvrstitev permafrostaUredi

 
Logotip Melnikovega permafrost inštitua (Rusija).

"V nasprotju z relativno pomanjkanjem poročil o zmrznjenih tleh v Severni Ameriki pred drugo svetovno vojno je bila v ruskem jeziku na voljo obsežna literatura o inženirskih vidikih permafrosta. Od leta 1942 se je Siemon William Muller poglobil v ustrezno rusko literaturo Kongresna knjižnica in ameriška knjižnica za geološke raziskave, tako da je lahko vladi do leta 1946 predložil inženirski vodnik in tehnično poročilo o permafrostu ", leto, v katerem je izraz skoval kot krčenje trajno zamrznjenih tal. Leta 1947 javno objavljeno revidirano poročilo, ki velja za kot prva severnoameriška razprava na to temo.

ObsegUredi

Permafrost so lahko tla, kamnine ali usedline, ki so zamrznjene več kot dve zaporedni leti. Na območjih, ki jih ne prekriva led, obstaja pod plastjo zemlje, kamnin ali usedlin, ki vsako leto zmrzne in se otopi in se imenuje "aktivna plast". V praksi to pomeni, da se permafrost pojavlja pri povprečni letni temperaturi −2 ° C (28,4 ° F) ali manj. Debelina aktivne plasti se spreminja glede na sezono, vendar je debela od 0,3 do 4 metre (plitva vzdolž arktične obale; globoko v južni Sibiriji in Qinghai-Tibetanski planoti). Obseg permafrosta se spreminja glede na podnebje: na severni polobli je danes večina manj ali manj pod vplivom 24% površine brez ledu, kar ustreza 19 milijonom kvadratnih kilometrov . Od tega je nekaj več kot polovica podlaga neprekinjenega permafrosta, približno 20 odstotkov prekinjenega permafrosta in nekaj manj kot 30 odstotkov občasnega permafrosta. Večino tega območja najdemo v Sibiriji, severni Kanadi, na Aljaski in na Grenlandiji. Pod aktivno plastjo letni temperaturni nihaji permafrosta z globino postanejo manjši. Najgloblja globina permafrosta se pojavi tam, kjer geotermalna toplota vzdržuje temperaturo nad lediščem. Nad to spodnjo mejo je lahko permafrost z enakomerno letno temperaturo - "izotermični permafrost".

Kontinuiteta pokritostiUredi

Permafrost se običajno oblikuje v katerem koli podnebju, kjer je povprečna letna temperatura zraka nižja od ledišča vode. Izjeme najdemo v vlažnih borealnih gozdovih, na primer v severni Skandinaviji in severovzhodnem delu evropske Rusije zahodno od Urala, kjer sneg deluje kot izolacijska odeja. Izjema so lahko tudi ledeniška območja. Ker so vsi ledeniki na dnu ogreti z geotermalno toploto, imajo lahko zmerni ledeniki, ki so ves čas blizu točke tališča pod pritiskom, tekočo vodo na meji s tlemi in zato nimajo podlaga za permafrost. "Fosilne" hladne anomalije v geotermalnem gradientu na območjih, kjer se je v pleistocenu razvila globoka permafrost, trajajo do nekaj sto metrov. To je razvidno iz meritev temperature v vrtinah v Severni Ameriki in Evropi.

Prekinjeni permafrostUredi

Temperatura pod zemljo se od sezone do sezone spreminja manj kot temperatura zraka, pri čemer se povprečne letne temperature večajo z globino zaradi nagiba geotermalne skorje. Če je torej povprečna letna temperatura zraka le malo pod 0 ° C (32 ° F), bo permafrost nastal le na mestih, ki so zaščitena - običajno s severnim ali južnim vidikom (na severni in južni polobli) - ustvarjajo neprekinjeno permafrost . Običajno bo permafrost v razmerah podnebja, kjer je povprečna letna temperatura površine tal med -5 in 0 ° C (23 in 32 ° F), prekinen. Na prej omenjenih vlažno prezimovanih območjih morda ne bo niti občasnih permafrostov do –2 ° C (28 ° F). Neprekinjeno permafrost pogosto delimo na obsežno diskontinuirano permafrost, kjer permafrost pokriva med 50 in 90 odstotki pokrajine in ga običajno najdemo na območjih s povprečnimi letnimi temperaturami med -2 ​​in -4 ° C (28 in 25 ° F) ter občasno permafrost, kjer je pokrov permafrosta manj kot 50 odstotkov pokrajine in se običajno pojavlja pri srednjih letnih temperaturah med 0 in −2 ° C (32 in 28 ° F). V znanosti o tleh je občasno območje permafrosta skrajšano SPZ (Sporadic Permafrost Zone) in obsežno diskontinuirano območje permafrosta DPZ (Discontinious Permafrost Zone). Izjeme se pojavljajo v neledeneli Sibiriji in na Aljaski, kjer je sedanja globina permafrosta relikt podnebnih razmer v ledeniški dobi, kjer so bile zime do 11 ° C (20 ° F) hladnejše od današnjih.

Neprekinjeni permafrostUredi

Pri povprečnih letnih temperaturah tal pod −5 ° C (23 ° F) vpliv vidika nikoli ne more biti zadosten za odmrzovanje permafrosta in nastane območje neprekinjenega permafrosta (skrajšano CPZ ali Continious Permafrost Zone). Linija neprekinjenega permafrosta na severni polobli predstavlja najjužnejšo mejo, kjer je zemljišče prekrito z neprekinjenim permafrostom ali ledeniškim ledom. Linija neprekinjenega permafrosta se spreminja po svetu proti severu ali jugu zaradi regionalnih podnebnih sprememb. Na južni polobli bi večina enakovredne črte spadala v Južni ocean, če bi bilo tam kopno. Večino antarktične celine prekrivajo ledeniki, pod katerimi je večina terena podvržena bazalnemu taljenju. Izpostavljena dežela Antarktike je v bistvu podložena z večnim ledom, od katerih se nekateri segrevajo in odtajajo vzdolž obale.

Alpski permafrostUredi

Alpski permafrost se pojavlja na višinah z dovolj nizkimi povprečnimi temperaturami, da vzdrži trajno zamrznjena tla; večina alpskega permafrosta je prekinjena. Ocene celotne površine alpskega permafrosta so različne. Bockheim in Munroe sta združila tri vire in pripravila tabelarične ocene po regijah, ki so znašale 3.560.000 kvadratnih milj (1.370.000 kvadratnih kilometrov).

Alpska permafrost v Andih ni bila kartirana. Njegov obseg je bil oblikovan za oceno količine vode, vezane na teh območjih. Leta 2009 je raziskovalec z Aljaske na najvišjem vrhu Afrike, gori Kilimandžaro, približno 3 ° južno od ekvatorja, odkril permafrost na višini 4.700 m (15.400 čevljev, po imperialnem sistemu - ZDA, Liberija, Mjanmar).

Podmorski permafrostUredi

Podmorski permafrost se pojavlja pod morskim dnom in obstaja na celinskih policah polarnih regij. Ta območja so nastala v zadnji ledeni dobi, ko je bil večji del zemeljske vode zavit v ledene plošče na kopnem in ko je bila gladina morja nizka. Ko so se ledene plošče spet postale morska voda, je permafrost v relativno toplih in slanih mejnih pogojih v primerjavi s površinskim permafrostom postal potopljene police. Zato podmorski permafrost obstaja v razmerah, ki vodijo do njegovega zmanjšanja. Po mnenju Osterkampa je podmorska permafrost dejavnik pri "oblikovanju, gradnji in delovanju obalnih objektov, objektov, ki temeljijo na morskem dnu, umetnih otokov, podmorskih cevovodov in vrtin, izvrtanih za raziskovanje in pridobivanje." vsebuje plinske hidrate na mestih, ki so "potencialno bogat vir energije", lahko pa se tudi destabilizirajo, ko se podmorska permafrost segreje in otopi, pri čemer nastajajo velike količine metana, ki je močan toplogredni plin.

ManifestacijeUredi

Globina bazeUredi

Permafrost se razteza do osnovne globine, kjer geotermalna toplota z Zemlje in povprečna letna temperatura na površini dosežeta ravnotežno temperaturo 0 ° C. Osnovna globina permafrosta doseže 1.493 m (4.898 ft) v porečjih reke Lena in Yana v Sibiriji. Geotermalni gradient je hitrost naraščanja temperature glede na naraščajočo globino v notranjosti Zemlje. Proč od mej tektonskih plošč je v večini sveta približno 25–30 ° C / km (124–139 ​​° F / mi) blizu površine. Spreminja se s toplotno prevodnostjo geološkega materiala in je za permafrost v tleh manjši kot v podlagah.

Izračuni kažejo, da je bil čas, potreben za oblikovanje globokega permafrosta, ki leži pod zalivom Prudhoe na Aljaski, več kot pol milijona let. To se je razširilo na več ledeniških in medledeniških ciklov pleistocena in nakazuje, da je sedanje podnebje v zalivu Prudhoe verjetno precej toplejše, kot je bilo v povprečju v tem obdobju. Takšno segrevanje v zadnjih 15.000 letih je splošno sprejeto. Tabela na desni kaže, da se prvih sto metrov permafrosta oblikuje razmeroma hitro, vendar globlje gladine postopoma dlje trajajo.

Masivni talni ledUredi

Ko vsebnost ledu v permafrostu preseže 250 odstotkov (led po masi posuši zemljo), se to razvrsti kot masivni led. Masivna ledena telesa se lahko sestavijo v vseh možnih stopnjah od ledenega blata do čistega ledu. Masivne ledene postelje imajo najmanj debelino najmanj 2 m in kratek premer vsaj 10 m. Prvo zabeležena severnoameriška opazovanja so opravili evropski znanstveniki pri reki Canning na Aljaski leta 1919. Ruska literatura navaja zgodnejši datum 1735 in 1739 med Veliko severno ekspedicijo P. Lassiniusa in Kh. P. Laptev. Dve kategoriji masivnega talnega ledu sta pokopani površinski in intrasedimentalni led (imenovan tudi ustavni led).

Pokopani površinski led lahko izvira iz snega, zamrznjenega jezerskega ali morskega ledu, aufeisov (nasedli rečni led) in - verjetno najbolj razširjenega - zakopanega ledeniškega ledu.

Intrasedimentalni led se tvori z zamrzovanjem podzemnih voda na mestu, v njem prevladuje ločen led, ki je posledica kristalizacijske diferenciacije, ki poteka med zmrzovanjem mokrih usedlin, skupaj z vodo, ki se seli na ledišče.

Intrasedimentalni ali ustavni led so široko opazovali in preučevali po vsej Kanadi, vključuje pa tudi vsiljiv in injekcijski led.

Poleg tega ledeni klini - ločena vrsta talnega ledu - tvorijo prepoznavne vzorce talnih ali poli tundre. Ledeni klini se oblikujejo v že obstoječem geološkem substratu in so bili prvič opisani leta 1919.

Kopenske oblikeUredi

Procesi permafrosta se kažejo v velikih kopenskih oblikah, kot so palsas in pingos, in manjših pojavov, kot so vzorčena tla na arktičnih, periglacialnih in alpskih območjih.

Ogljikov cikel v permafrostuUredi

Cikel ogljikovega permafrosta (Arctic Carbon Cycle) se ukvarja s prenosom ogljika iz permafrostnih tal v kopensko vegetacijo in mikrobe, v ozračje, nazaj v vegetacijo in nazadnje nazaj v permafrost tla s pokopi in sedimentacijo zaradi kriogenih procesov. Del tega ogljika se prek svetovnega ogljikovega kroga prenese v ocean in druge dele sveta. Cikel vključuje izmenjavo ogljikovega dioksida in metana med kopenskimi komponentami in ozračjem ter prenos ogljika med zemljo in vodo kot metana, raztopljenega organskega ogljika, raztopljenega anorganskega ogljika, delcev anorganskega ogljika in delcev organskega ogljika.

Učinki podnebnih spremembUredi

Arktična permafrost se že stoletja zmanjšuje. Posledica tega je odtaljevanje tal, ki je lahko šibkejše, in sproščanje metana, kar prispeva k večji stopnji globalnega segrevanja kot del povratne zanke zaradi razgradnje mikrobov. Močvirja, ki se izsušijo zaradi odvodnjavanja ali izhlapevanja, ogrozijo sposobnost preživetja rastlin in živali. Ko se bo permafrost še naprej zmanjševal, se bodo okrepili številni scenariji podnebnih sprememb. Na območjih, kjer je permafrost velik, lahko infrastruktura, ki je obkrožena, zaradi otoplitve permafrosta močno poškoduje.

Zgodovinske spremembeUredi

V zadnjem ledeniškem maksimumu je neprekinjena permafrost pokrivala veliko večje območje, kot je danes, in je pokrivala vso Evropo brez ledu na jugu do približno Segedina (jugovzhodna Madžarska) in Azovskega morja (takrat suhe zemlje) in južne Vzhodne Azije. do današnjih Changchuna in Abashirija. V Severni Ameriki je obstajal le izredno ozek pas permafrosta južno od ledene plošče na približno zemljepisni širini New Jerseyja skozi južno Iowo in severni Missouri, vendar je bil permafrost bolj obsežen v bolj suhih zahodnih regijah, kjer je segal do južne meje Idaha in Oregon. Na južni polobli obstaja nekaj dokazov o nekdanji permafrosti iz tega obdobja v osrednjem Otagu in Argentinski Patagoniji, ki pa je bila verjetno prekinjena in je povezana s tundro. Alpski permafrost se je pojavil tudi v Drakensbergu med ledeniškimi maksimumi nad približno 3.000 metri.

OdtajanjeUredi

Po definiciji (standardn.) je permafrost zemlja, ki ostane zamrznjena dve leti ali več. Tla so lahko sestavljena iz številnih materialov podlage, vključno s podlago, usedlinami, organskimi snovmi, vodo ali ledom. Zamrznjena tla so tista, ki so pod lediščem vode, ne glede na to, ali je voda v substratu ali ne. Zemeljski led ni vedno prisoten, kot je to mogoče pri neporozni podlagi, vendar se pogosto pojavlja in je lahko prisoten v količinah, ki presegajo potencialno hidravlično nasičenost odmrznjenega substrata.

Med odmrzovanjem se vsebnost ledu v tleh stopi in, ko voda odteka ali izhlapi, povzroči, da struktura tal oslabi in včasih postane viskozna, dokler ne dobi moči z zmanjšanjem vsebnosti vlage. Eden vidnih znakov razgradnje permafrosta je naključno odmikanje dreves od njihove vertikalne usmeritve na območjih permafrosta.

Vpliv na stabilnost naklonaUredi

V preteklem stoletju so zabeležili vedno večje število odpovedi alpskih pobočij v gorskih verigah po vsem svetu. Pričakuje se, da je veliko število strukturnih napak posledica odmrzovanja permafrosta, ki naj bi bilo povezano s podnebnimi spremembami. Odtajanje permafrosta naj bi prispevalo k plazu 1987 Val Pola, ki je v italijanskih Alpah ubil 22 ljudi. V gorskih verigah je večino strukturne stabilnosti mogoče pripisati ledenikom in permafrostu. Ko se podnebje segreje, se permafrost odtaja, kar ima za posledico manj stabilno gorsko strukturo in na koncu več propadov pobočij. Naraščajoče temperature omogočajo globlje globine aktivne plasti, kar povzroči povečano infiltracijo vode. Led v tleh se topi, kar povzroča izgubo trdnosti tal, pospešeno gibanje in morebitne drobirske tokove.

McSaveney (glej) je poročal o velikih padcih kamnin in ledu (do 11,8 milijona m3), potresih (do 3,9 Richterja), poplavah (do 7,8 milijona m3 vode) in hitrem pretoku kamenja na velike razdalje (do 7,5 km) pri 60 m / s) zaradi "nestabilnosti pobočij" v visokogorskem permafrostu. Nestabilnost pobočij v permafrostu pri povišanih temperaturah blizu ledišča pri segrevanju permafrosta je povezana z učinkovitim stresom in nabiranjem tlaka por-vode v teh tleh. [53] Kia in njegovi soizumitelji so izumili nov togi piezometer brez filtrov (FRP) za merjenje tlaka pore in vode v delno zmrznjenih tleh, kot je ogrevanje tal z večnim ledom. Uporabo koncepta učinkovitega stresa so razširili na delno zmrznjena tla za uporabo v analizi stabilnosti pobočij segrevajočih se permafrostov. Uporaba koncepta učinkovitega napetosti ima številne prednosti, kot je sposobnost razširitve konceptov "Mehanika tal kritičnega stanja" v inženiring zamrznjenih tal.

V visokogorju lahko padce kamenja povzroči odmrzovanje skalnih mas s permafrostom.

Ekološke poslediceUredi

V severni cirkupolarni regiji permafrost vsebuje 1700 milijard ton organskega materiala, kar predstavlja skoraj polovico vsega organskega materiala v vseh tleh. Ta bazen je bil zgrajen tisoče let in se v hladnih razmerah na Arktiki le počasi razgrajuje. Količina zaseženega ogljika v permafrostu je štirikrat večja od ogljika, ki je bil sproščen v ozračje zaradi človekovih dejavnosti v sodobnem času. Eden od primerov tega je jedom, ki je organsko bogat (približno 2 mas.% Ogljika) plestocenski lesni permafrost z vsebnostjo ledu 50–90 vol.%.

Oblikovanje permafrosta ima pomembne posledice za ekološke sisteme, predvsem zaradi omejitev, ki veljajo za območja korenin, pa tudi zaradi omejitev geometrije brlog in jam za favno, ki potrebuje podzemne domove. Sekundarni učinki vplivajo na vrste, odvisne od rastlin in živali, katerih življenjski prostor omejuje permafrost. Eden najbolj razširjenih primerov je prevladovanje črne smreke na obsežnih območjih permafrosta, saj ta vrsta lahko prenaša vzorec koreninjenja, omejen na bližnjo površino.

En gram zemlje iz aktivne plasti lahko vključuje več kot milijardo bakterijskih celic. Če se bakterije iz enega kilograma aktivne plasti tal postavijo ena ob drugo, tvorijo 1000 km dolgo verigo. Število bakterij v permafrostnih tleh se zelo razlikuje, običajno od 1 do 1000 milijonov na gram zemlje. Večine teh bakterij in gliv v permafrostnih tleh ni mogoče gojiti v laboratoriju, vendar je identiteto mikroorganizmov mogoče razkriti s tehnikami, ki temeljijo na DNA.

Arktična regija je eden izmed mnogih naravnih virov toplogrednih plinov metana in ogljikovega dioksida. Globalno segrevanje pospešuje njegovo sproščanje zaradi sproščanja metana iz obstoječih zalog in metanogeneze v gnitji biomasi. Velike količine metana so na Arktiki shranjene v nahajališčih zemeljskega plina, v permafrostu in kot podmorski klatrati. Permafrost in klatrati se zaradi segrevanja razgrajujejo, zato lahko zaradi globalnega segrevanja nastanejo velike izpuste metana iz teh virov. Drugi viri metana vključujejo podmorski taliki, rečni promet, umik ledenega kompleksa, podmorski permafrost in razpadajoče nahajališče plinskih hidratov. Predhodne računalniške analize kažejo, da bi lahko permafrost proizvedel približno 15 odstotkov današnjih emisij zaradi človekovih dejavnosti.

Hipoteza, ki jo je promoviral Sergej Zimov, je, da je zmanjšanje čred velikih rastlinojedih povečalo razmerje med emisijo energije in absorpcijo energije tundre (energetsko bilanco) na način, ki povečuje težnjo po neto odmrzovanju permafrosta. To hipotezo preizkuša v eksperimentu v pleistocenskem parku, naravnem rezervatu na severovzhodu Sibirije.

Predvidena hitrost sprememb na ArktikiUredi

Glede na peto poročilo o oceni IPCC obstaja veliko zaupanje, da so se temperature večnega ledu v večini regij zvišale od zgodnjih osemdesetih let. Opazovano segrevanje je bilo do 3 ° C na delih severne Aljaske (od zgodnjih osemdesetih do sredine 2000-ih) in do 2 ° C na delih ruskega evropskega severa (1971–2010). V Yukonu se je lahko območje neprekinjene permafrosta od leta 1899 premaknilo za 100 kilometrov (62 milj), a natančni zapisi segajo le 30 let nazaj. Menijo, da bi odmrzovanje permafrosta lahko poslabšalo globalno segrevanje z izpuščanjem metana in drugih ogljikovodikov, ki so močni toplogredni plini. Prav tako bi lahko spodbudil erozijo, ker permafrost daje stabilnost neplodnim arktičnim pobočjem.

Pričakuje se, da se bodo temperature na Arktiki zvišale približno dvakrat več od svetovne stopnje. Medvladni odbor za podnebne spremembe (IPCC - Intergovernmental Panel on Climate Change, ang.) bo v svojem petem poročilu določil scenarije za prihodnost, ko se bo temperatura na Arktiki do leta 2040 dvignila med 1,5 in 2,5 ° C, do leta 2100 pa z 2 do 7,5 ° C. Ocene se razlikujejo glede na to, kako veliko ton toplogrednih plinov se odda iz odmrznjenih večnih ledišč. Ena ocena kaže, da bo do leta 2040 izpuščenih 110–231 milijard ton ekvivalentov CO2 (približno polovica iz ogljikovega dioksida in druga polovica iz metana), do leta 2100 pa 850–1400 milijard ton. To ustreza povprečni letni stopnji emisij 4 do 8 milijard ton ekvivalentov CO2 v obdobju 2011–2040 in letno 10–16 milijard ton ekvivalentov CO2 v obdobju 2011–2100 zaradi odmrzovanja permafrosta. Za primerjavo, antropogena emisija vseh toplogrednih plinov v letu 2010 znaša približno 48 milijard ton ekvivalenta CO2. Sproščanje toplogrednih plinov iz odmrznjenega permafrosta v ozračje povečuje globalno segrevanje.

Ohranjanje organizmov v permafrostuUredi

MikrobiUredi

Znanstveniki napovedujejo, da se bo iz taljenja ledu letno sprostilo do 10 na 21 mikrobov, vključno z glivami in bakterijami. Ti mikrobi se pogosto izpustijo neposredno v ocean. Zaradi selitvene narave številnih vrst rib in ptic je možno, da imajo ti mikrobi visoko stopnjo prenosa.

Permafrost v vzhodni Švici so raziskovalci leta 2016 analizirali na območju alpskega permafrosta, imenovanem "Muot-da-Barba-Peider". Na tem mestu je bila raznolika mikrobna skupnost z različnimi bakterijami in evkariontskimi skupinami. Pomembnejše skupine bakterij so bile vrsta acidobakterij, Actinobacteria, AD3, Bacteroidetes, Chloroflexi, Gemmatimonadetes, OD1, Nitrospirae, Planctomycetes, Proteobacteria in Verrucomicrobia. Med pomembnejše evkariontske glive so spadale Ascomycota, Basidiomycota in Zygomycota. Pri sedanji vrsti so znanstveniki opazili različne prilagoditve za razmere pod ničlo, vključno z zmanjšanimi in anaerobnimi presnovnimi procesi.

Domneva se, da je do izbruha antraksa na polotoku Yamal leta 2016 prišlo zaradi odmrzovanja permafrosta. V sibirskem permafrostu sta prisotni tudi dve vrsti virusa: Pithovirus sibericum in Mollivirus sibericum. Oba sta stara približno 30.000 let in se štejeta za velikanska virusa, ker sta večja od večine bakterij in imata genoma večja od drugih virusov. Oba virusa sta še vedno infektivna, kar dokazuje njihova sposobnost okužbe Acanthamoebe, rodu ameb.

Dokazano je, da zamrzovanje pri nizkih temperaturah ohranja nalezljivost virusov. Kalicivirusi, gripa A in enterovirusi (npr. Poliovirusi, ehovirusi, virusi Coxsackie) so bili ohranjeni v ledu in / ali permafrostu. Znanstveniki so določili tri značilnosti, ki jih virus potrebuje za uspešno ohranitev v ledu: velika številčnost, sposobnost prenosa v ledu in sposobnost ponovnega ciklusa bolezni po izpustu iz ledu. Neposredna okužba človeka s permafrosta ali ledu ni bila dokazana; taki virusi se običajno širijo prek drugih organizmov ali abiotskih mehanizmov.

Študija poznopleistocenskih sibirskih vzorcev permafrosta iz nižine Kolyma (vzhodnosibirska nižina) je z izolacijo DNA in kloniranjem genov (natančneje geni 16S rRNA) ugotovila, kateri vrsti pripadajo ti mikroorganizmi. Ta tehnika je omogočila primerjavo znanih mikroorganizmov z novoodkritimi vzorci in razkrila osem filotipov, ki so pripadali vrstam Actinobacteria in Proteobacteria.

RastlineUredi

Leta 2012 so ruski raziskovalci dokazali, da lahko permafrost služi kot naravno odlagališče za starodavne oblike življenja, in sicer z oživitvijo silene stenofile iz 30.000 let starega tkiva, najdenega v vročini ledene dobe v sibirskem permafrostu. To je najstarejše rastlinsko tkivo, kdaj oživljeno. Rastlina je bila rodovitna, dajala je bele cvetove in sposobna semena. Študija je pokazala, da lahko tkivo preživi ohranjanje ledu več deset tisoč let.

Drugi problemi: Mednarodno združenje za permafrost (IPA) je vključevalo vprašanja v zvezi s permafrostom. Sklicuje mednarodne konference o permafrostu, izvaja posebne projekte, kot so priprava baz podatkov, zemljevidov, bibliografij in glosarjev, ter usklajuje mednarodne terenske programe in mreže. Med drugimi vprašanji, ki jih obravnava IPA, so: Težave pri gradnji na permafrostu zaradi spremembe lastnosti tal na tleh, na katerih so postavljene konstrukcije, in bioloških procesov v permafrostu, npr. ohranjanje organizmov, zamrznjenih in situ.

Druge težaveUredi

Gradnja na permafrostuUredi

Gradnja na permafrostu je težka, ker lahko toplota stavbe (ali cevovoda) ogreje permafrost in destabilizira strukturo. Ogrevanje lahko povzroči odmrzovanje tal in posledično oslabitev opore konstrukciji, ko se vsebnost ledu spremeni v vodo; če so konstrukcije zgrajene na pilotih, lahko segrevanje povzroči premikanje skozi lezenje zaradi spremembe trenja na pilotih, tudi če ostajajo tla zamrznjena.

Tri pogoste rešitve vključujejo: uporabo temeljev na lesenih pilotih; gradnja na debeli gramozni blazinici (običajno 1-2 metra / 3,3-6,6 čevljev); ali z uporabo brezvodnih amoniačnih toplotnih cevi. Cevovodni sistem Trans-Aljaske uporablja toplotne cevi, vgrajene v navpične nosilce, da prepreči ponikanje cevovoda, železnica Qingzang v Tibetu pa uporablja različne načine za ohranjanje tal na hladnem, tako na območjih z zemljo, občutljivo na zmrzal. Permafrost bo morda potreboval posebne ograde za zakopane komunalne storitve, imenovane "utilidorji".

Inštitut za permafrost Melnikov iz Jakutska je ugotovil, da je mogoče potopitev velikih zgradb v tla preprečiti z uporabo temeljev, ki segajo do 15 metrov ali več. Na tej globini se temperatura ne spreminja z letnimi časi in ostaja na približno -5 ° C (91 ° F).

Odtajanje večnega ledu ogroža industrijsko infrastrukturo. Maja 2020 je zaradi odmrzovanja permafrosta v Termoelektrarni Norilsk-Taimyr Energy št. 3 prišlo do propada rezervoarja za nafto, ki je poplavil lokalne reke z 21.000 kubičnimi metri (17.500 ton) dizelskega olja. Razlitje nafte Norilsk leta 2020 je opisano kot drugo največje razlitje nafte v sodobni ruski zgodovini.

Poglejte tudiUredi

https://en.wikipedia.org/wiki/Global_Terrestrial_Network_for_Permafrost

https://en.wikipedia.org/wiki/Permafrost

Medvladni forum za podnebne spremembe

Viri (References)Uredi

Doyle, Heather (April 9, 2020). "What Is Permafrost?". NASA Climate Kids. Retrieved 2020-04-16. Walker, H. Jesse (December 2010). "Frozen in Time. Permafrost and Engineering Problems Review". Arctic. 63 (4): 477. doi:10.14430/arctic3340. Ray, Luis L. "Permafrost - USGS [=United States Geological Survey] Library Publications Warehouse" (PDF). Archived (PDF) from the original on 2017-05-02. Retrieved November 19, 2018. U.S. Geological Survey; United States. Army. Corps of Engineers. Strategic Intelligence Branch (1943). "Permafrost or permanently frozen ground and related engineering problems". Strategic Engineering Study (62): 231. OCLC 22879846. Occurrences on Google Books. Muller, Siemon William (1947). Permafrost. Or, Permanently Frozen Ground and Related Engineering Problems. Ann Arbor, Michigan: Edwards. ISBN 9780598538581. OCLC 1646047. Staff (2014). "What is Permafrost?". International Permafrost Association. Archived from the original on 2014-11-08. Retrieved 2014-02-28. Tarnocai; et al. (2009). "Soil organic carbon pools in the northern circumpolar permafrost region". Global Biogeochemical Cycles. 23 (2): GB2023. Bibcode:2009GBioC..23.2023T. doi:10.1029/2008gb003327. Heginbottom, J. Alan, Brown, Jerry; Humlum, Ole and Svensson, Harald; ‘State of the Earth’s Cryosphere at the Beginning of the 21st Century: Glaciers, Global Snow Cover, Floating Ice, and Permafrost and Periglacial Environments’, p. A435 Delisle, G. (2007). "Near-surface permafrost degradation: How severe during the 21st century?". Geophysical Research Letters. 34 (L09503): 4. Bibcode:2007GeoRL..34.9503D. doi:10.1029/2007GL029323. Sharp, Robert Phillip (1988). Living Ice: Understanding Glaciers and Glaciation. Cambridge University Press. p. 27. ISBN 978-0-521-33009-1. Majorowicz, Jacek (2012), "Permafrost at the ice base of recent pleistocene glaciations – Inferences from borehole temperatures profiles", Bulletin of Geography. Physical Geography Series, Physical Geography Series, 5: 7–28, doi:10.2478/v10250-012-0001-x Brown, Roger J.E.; Péwé, Troy L. (1973), "Distribution of permafrost in North America and its relationship to the environment: A review, 1963–1973", Permafrost: North American Contribution – Second International Conference, 2: 71–100, ISBN 9780309021159 Robinson, S.D.; et al. (2003), "Permafrost and peatland carbon sink capacity with increasing latitude", in Phillips; et al. (eds.), Permafrost (PDF), Swets & Zeitlinger, pp. 965–970, ISBN 90-5809-582-7, archived (PDF) from the original on 2014-03-02, retrieved 2014-03-02 Bockheim, James G.; Munroe, Jeffrey S. (2014), "Organic carbon pools and genesis of alpine soils with permafrost: a review" (PDF), Arctic, Antarctic, and Alpine Research, 46 (4): 987–1006, doi:10.1657/1938-4246-46.4.987, S2CID 53400041, archived (PDF) from the original on 2016-09-23, retrieved 2016-04-25 Andersland, Orlando B.; Ladanyi, Branko (2004). Frozen ground engineering (2nd ed.). Wiley. p. 5. ISBN 978-0-471-61549-1. Zoltikov, I.A. (1962), "Heat regime of the central Antarctic glacier", Antarctica, Reports of the Commission, 1961 (in Russian): 27–40 Campbell, Iain B.; Claridge, Graeme G. C. (2009), "Antarctic Permafrost Soils", in Margesin, Rosa (ed.), Permafrost Soils, Soil Biology, 16, Berlin: Springer, pp. 17–31, doi:10.1007/978-3-540-69371-0_2, ISBN 978-3-540-69370-3 Heinrich, Holly (July 25, 2013), "Permafrost Melting Faster Than Expected in Antarctica", National Public Radio, archived from the original on 2016-05-03, retrieved 2016-04-23 "Alpine permafrost". Encyclopedia Britannica. Retrieved 2020-04-16. Azocar, Guillermo (2014), Modeling of Permafrost Distribution in the Semi-arid Chilean Andes, Waterloo, Ontario: University of Waterloo, archived from the original on 2016-05-30, retrieved 2016-04-24 Ruiz, Lucas; Liaudat, Dario Trombotto (2012), Mountain Permafrost Distribution in the Andes of Chubut (Argentina) Based on a Statistical Model (PDF), Tenth International Conference on Permafrost, Mendoza, Argentina: Instituto Argentino de Nivología Glaciología y Ciencias Ambientales, pp. 365–370, archived (PDF) from the original on 2016-05-13, retrieved 2016-04-24 Rozell, Ned (November 18, 2009), "Permafrost near equator; hummingbirds near subarctic", Capitol City Weekly, Juneau, Alaska Editors (2014). "What is Permafrost?". International Permafrost Association. Archived from the original on 2014-11-08. Retrieved 2014-11-08. Osterkamp, T. E. (2001), "Sub-Sea Permafrost", Encyclopedia of Ocean Sciences, pp. 2902–12, doi:10.1006/rwos.2001.0008, ISBN 9780122274305 IPCC AR4 (2007). "Climate Change 2007: Working Group I: The Physical Science Basis". Archived from the original on April 13, 2014. Retrieved April 12, 2014. Lunardini 1995, p. 35 Table Dl. Freeze at Prudhoe Bay, Alaska. Osterkamp, T.E.; Burn, C.R. (2014-09-14), "Permafrost", in North, Gerald R.; Pyle, John A.; Zhang, Fuqing (eds.), Encyclopedia of Atmospheric Sciences (PDF), 4, Elsevier, pp. 1717–1729, ISBN 978-0123822260, archived (PDF) from the original on 2016-11-30, retrieved 2016-03-08 Desonie, Dana (2008). Polar Regions: Human Impacts. New York: Chelsea Press. ISBN 978-0-8160-6218-8. Fridleifsson, Ingvar B.; Bertani, Ruggero; Huenges, Ernst; Lund, John W.; Ragnarsson, Arni; Rybach, Ladislaus (2008-02-11). O. Hohmeyer and T. Trittin (ed.). "The possible role and contribution of geothermal energy to the mitigation of climate change" (PDF). Luebeck, Germany: 59–80. Archived from the original (PDF) on 2013-03-12. Retrieved 2013-11-03. Lunardini, Virgil J. (April 1995). "Permafrost Formation Time" (PDF). CRREL Report 95-8. Hanover NH: US Army Corps of Engineers Cold Regions Research and Engineering Laboratory. p. 18. ADA295515. Archived from the original on 2013-04-08. Retrieved 2012-03-03. Mackay, J. Ross (1973), "Problems in the origins of massive icy beds, Western Arctic, Canada", Permafrost: North American Contribution – Second International Conference, 2: 223–8, ISBN 9780309021159 French, H.M. (2007). The Periglacial Environment (3 ed.). Chichester: Wiley. Shumskiy, P.A.; Vtyurin, B.I. (1963), "Underground ice", Permafrost International Conference (1287): 108–13 Mackay, J.R.; Dallimore, S.R. (1992), "Massive ice of Tuktoyaktuk area, Western Arctic coast, Canada", Canadian Journal of Earth Sciences, 29 (6): 1234–42, Bibcode:1992CaJES..29.1235M, doi:10.1139/e92-099 Astakhov, 1986; Kaplanskaya and Tarnogradskiy, 1986; Astakhov and Isayeva, 1988; French, 1990; Lacelle et al., 2009 Pidwirny, M (2006). "Periglacial Processes and Landforms". Fundamentals of Physical Geography. Kessler MA, Werner BT (January 2003). "Self-organization of sorted patterned ground". Science. 299 (5605): 380–3. Bibcode:2003Sci...299..380K. doi:10.1126/science.1077309. PMID 12532013. S2CID 27238820. McGuire, A.D., Anderson, L.G., Christensen, T.R., Dallimore, S., Guo, L., Hayes, D.J., Heimann, M., Lorenson, T.D., Macdonald, R.W., and Roulet, N. (2009). "Sensitivity of the carbon cycle in the Arctic to climate change". Ecological Monographs. 79 (4): 523–555. doi:10.1890/08-2025.1. hdl:11858/00-001M-0000-000E-D87B-C. Koven, Charles D.; Riley, William J.; Stern, Alex (2012-10-01). "Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models". Journal of Climate. 26 (6): 1877–1900. doi:10.1175/JCLI-D-12-00228.1. ISSN 0894-8755. OSTI 1172703. Nelson, F. E.; Anisimov, O. A.; Shiklomanov, N. I. (2002-07-01). "Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions". Natural Hazards. 26 (3): 203–225. doi:10.1023/A:1015612918401. ISSN 1573-0840. S2CID 35672358. Sidorchuk, Aleksey, Borisova Olga and Panin; Andrey; “Fluvial response to the late Valdai/Holocene environmental change on the East European plain” Archived 2013-12-26 at the Wayback Machine Yugo Ono and Tomohisa Irino; “Southern migration of westerlies in the Northern Hemisphere PEP II transect during the Last Glacial Maximum” in Quaternary International 118–119 (2004); pp. 13–22 Malde, H.E.; “Patterned Ground in the Western Snake River Plain, Idaho, and Its Possible Cold-Climate Origin”; in Geological society of America Bulletin; v. 75 no. 3 (March 1964); pp. 191–208 Grab, Stefan; “Characteristics and palaeoenvironmental significance of relict sorted patterned ground, Drakensberg plateau, southern Africa” in Quaternary Science Reviews, vol. 21, issues 14–15, (August 2002), pp. 1729–1744 "Inventory of fossil cryogenic forms and structures in Patagonia and the mountains of Argentina beyond the Andes". South African Journal of Science, 98: 171–180, Review Articles, Pretoria, Sudáfrica. Huissteden, J. van (2020). Thawing Permafrost: Permafrost Carbon in a Warming Arctic. Springer Nature. p. 296. ISBN 978-3-030-31379-1. Larry D. Dyke, Wendy E. Sladen (2010). "Permafrost and Peatland Evolution in the Northern Hudson Bay Lowland, Manitoba". Arctic. 63 (4). doi:10.14430/arctic3332. Archived from the original on 2014-08-10. Retrieved 2014-08-02. F., Dramis; M., Govi; M., Guglielmin; G., Mortara (1995-01-01). "Mountain permafrost and slope instability in the Italian Alps: The Val Pola Landslide". Permafrost and Periglacial Processes. 6 (1): 73–81. doi:10.1002/ppp.3430060108. ISSN 1099-1530. Huggel, C.; Allen, S.; Deline, P.; et al. (June 2012), "Ice thawing, mountains falling; are alpine rock slope failures increasing?", Geology Today, 28 (3): 98–104, doi:10.1111/j.1365-2451.2012.00836.x Darrow, M.; Gyswyt, N.; Simpson, J.; Daanen, R.; Hubbard, T.; et al. (May 2016), "Frozen debris lobe morphology and movement: an overview of eight dynamic features, southern Brooks Range, Alaska" (PDF), The Cryosphere, 10 (3): 977–993, Bibcode:2016TCry...10..977D, doi:10.5194/tc-10-977-2016 McSaveney, M.J. (2002). Recent rockfalls and rock avalanches in Mount Cook national park, New Zealand. In Catastrophic landslides, effects, occurrence and mechanisms. Boulder: Geological Society of America, Reviews in Engineering Geology, Volume XV. pp. 35–70. ISBN 9780813758152. Archived from the original on 2018-01-28. Retrieved 2018-01-27. Nater, P.; Arenson, L.U.; Springman, S.M. (2008). Choosing geotechnical parameters for slope stability assessments in alpine permafrost soils. In 9th international conference on permafrost. Fairbanks, USA: University of Alaska. pp. 1261–1266. ISBN 9780980017939. Kia, Mohammadali; Sego, David Charles; Morgenstern, Norbert Rubin. "FRP: Filter-less Rigid Piezometer for Measuring Pore-Water Pressure in Partially Frozen Soils". Alpha Adroit Engineering Ltd. Alpha Adroit Engineering Ltd. Archived from the original on 2018-01-28. Retrieved 27 January 2018. Temme, Arnaud J. A. M. (2015). "Using Climber's Guidebooks to Assess Rock Fall Patterns Over Large Spatial and Decadal Temporal Scales: An Example from the Swiss Alps". Geografiska Annaler: Series A, Physical Geography. 97 (4): 793–807. doi:10.1111/geoa.12116. ISSN 1468-0459. S2CID 55361904. Schuur; et al. (2011). "High risk of permafrost thaw". Nature. 480 (7375): 32–33. Bibcode:2011Natur.480...32S. doi:10.1038/480032a. PMID 22129707. S2CID 4412175. Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS (September 2006). "Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming". Nature. 443 (7107): 71–5. Bibcode:2006Natur.443...71W. doi:10.1038/nature05040. PMID 16957728. S2CID 4415304. C. Michael Hogan, Black Spruce: Picea mariana, GlobalTwitcher.com, ed. Nicklas Stromberg, November, 2008 Archived 2011-10-05 at the Wayback Machine Hansen; et al. (2007). "Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway". Environmental Microbiology. 9 (11): 2870–2884. doi:10.1111/j.1462-2920.2007.01403.x. PMID 17922769. – and additional references in this paper. Yergeau; et al. (2010). "The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses". The ISME Journal. 4 (9): 1206–1214. doi:10.1038/ismej.2010.41. PMID 20393573. Bloom, A. A.; Palmer, P. I.; Fraser, A.; Reay, D. S.; Frankenberg, C. (2010). "Large-Scale Controls of Methanogenesis Inferred from Methane and Gravity Spaceborne Data" (PDF). Science. 327 (5963): 322–325. Bibcode:2010Sci...327..322B. doi:10.1126/science.1175176. PMID 20075250. S2CID 28268515. Natali, Susan M.; Watts, Jennifer D.; Rogers, Brendan M.; Potter, Stefano; Ludwig, Sarah M.; Selbmann, Anne-Katrin; Sullivan, Patrick F.; Abbott, Benjamin W.; Arndt, Kyle A.; Birch, Leah; Björkman, Mats P. (2019-10-21). "Large loss of CO 2 in winter observed across the northern permafrost region". Nature Climate Change. 9 (11): 852–857. Bibcode:2019NatCC...9..852N. doi:10.1038/s41558-019-0592-8. hdl:10037/17795. ISSN 1758-6798. S2CID 204812327. Walter, K. M.; Chanton, J. P.; Chapin, F. S.; Schuur, E. A. G.; Zimov, S. A. (2008). "Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages". Journal of Geophysical Research. 113: G00A08. Bibcode:2008JGRG..11300A08W. doi:10.1029/2007JG000569. Zimov, Sa; Schuur, Ea; Chapin, Fs, 3Rd (Jun 2006). "Climate change. Permafrost and the global carbon budget". Science. 312 (5780): 1612–3. doi:10.1126/science.1128908. ISSN 0036-8075. PMID 16778046. S2CID 129667039. Shakhova, Natalia (2005). "The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle". Geophysical Research Letters. 32 (9): L09601. Bibcode:2005GeoRL..32.9601S. doi:10.1029/2005GL022751. Pfeiffer, Eva-Maria; Grigoriev, Mikhail N.; Liebner, Susanne; Beer, Christian; Knoblauch, Christian (April 2018). "Methane production as key to the greenhouse gas budget of thawing permafrost". Nature Climate Change. 8 (4): 309–312. Bibcode:2018NatCC...8..309K. doi:10.1038/s41558-018-0095-z. ISSN 1758-6798. S2CID 90764924. Reuters (2019-06-18). "Scientists shocked by Arctic permafrost thawing 70 years sooner than predicted". The Guardian. ISSN 0261-3077. Retrieved 2019-07-02. Shakhova, Natalia; Semiletov, Igor (2007). "Methane release and coastal environment in the East Siberian Arctic shelf". Journal of Marine Systems. 66 (1–4): 227–243. Bibcode:2007JMS....66..227S. CiteSeerX 10.1.1.371.4677. doi:10.1016/j.jmarsys.2006.06.006. Gillis, Justin (December 16, 2011). "As Permafrost Thaws, Scientists Study the Risks". The New York Times. Archived from the original on 2017-05-19. Retrieved 2017-02-11. S.A. Zimov, N.S. Zimov, A.N. Tikhonov, F.S. Chapin III (2012). "Mammoth steppe: a high-productivity phenomenon" (PDF). In: Quaternary Science Reviews, vol. 57, 4 December 2012, p. 42 fig.17. Archived from the original (PDF) on 4 March 2016. Retrieved 17 October 2014. Sergey A. Zimov (6 May 2005): "Pleistocene Park: Return of the Mammoth's Ecosystem." Archived 2017-02-20 at the Wayback Machine In: Science, pages 796–798. Article also to be found in www.pleistocenepark.ru/en/ – Materials. Archived 2016-11-03 at the Wayback Machine Retrieved 5 May 2013. "Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013 - Summary for Policymakers - Template Lab". 10 November 2015. Archived from the original on 2017-01-18. Retrieved 2017-01-16. Sample, Ian (11 August 2005). "Warming hits 'tipping point'". The Guardian. Archived from the original on 2016-08-26. Retrieved 2016-12-12. ] Schuur, E.A.G.; Vogel1, J.G.; Crummer, K.G.; Lee, H.; Sickman J.O.; Osterkamp T.E. (28 May 2009). "The effect of permafrost thaw on old carbon release and net carbon exchange from tundra". Nature. 459 (7246): 556–9. Bibcode:2009Natur.459..556S. doi:10.1038/nature08031. PMID 19478781. S2CID 4396638. "Thaw point". The Economist. 30 July 2009. Archived from the original on 2011-02-26. Retrieved 2010-11-17. Turetsky, Merritt R. (2019-04-30). "Permafrost collapse is accelerating carbon release". Nature. 569 (7754): 32–34. Bibcode:2019Natur.569...32T. doi:10.1038/d41586-019-01313-4. PMID 31040419. IPCC 2007. Summary for policy makers. In: Climate Change 2007: The physical basis. Working group I contribution to the fourth assessment report of the Intergovernmental Panel on Climate Change (eds. Solomon et al.). Cambridge University Press, Cambridge, UK. "Arctic permafrost is thawing fast. That affects us all". National Geographic. 2019-08-13. Retrieved 2019-08-17. UNEP 2011. Bridging the Emissions Gap. A UNEP Synthesis Report. 56 p. UNEP, Nairobi, Kenya Comyn-Platt, Edward (2018). "Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks". Nature Geoscience. 11 (8): 568–573. Bibcode:2018NatGe..11..568C. doi:10.1038/s41561-018-0174-9. S2CID 134078252. Turetsky, Merritt R.; Abbott, Benjamin W.; Jones, Miriam C.; Anthony, Katey Walter; Olefeldt, David; Schuur, Edward A. G.; Grosse, Guido; Kuhry, Peter; Hugelius, Gustaf; Koven, Charles; Lawrence, David M. (2020-02-03). "Carbon release through abrupt permafrost thaw". Nature Geoscience. 13 (2): 138–143. Bibcode:2020NatGe..13..138T. doi:10.1038/s41561-019-0526-0. ISSN 1752-0908. S2CID 213348269. Smith, Alvin W.; Skilling, Douglas E.; Castello, John D.; Rogers, Scott O. (2004-01-01). "Ice as a reservoir for pathogenic human viruses: specifically, caliciviruses, influenza viruses, and enteroviruses". Medical Hypotheses. 63 (4): 560–566. doi:10.1016/j.mehy.2004.05.011. ISSN 0306-9877. PMID 15324997. Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin (March 2016). Margesin, Rosa (ed.). "Microbial diversity in European alpine permafrost and active layers". FEMS Microbiology Ecology. 92 (3): fiw018. doi:10.1093/femsec/fiw018. ISSN 1574-6941. PMID 26832204. "Anthrax Outbreak In Russia Thought To Be Result Of Thawing Permafrost". Archived from the original on 2016-09-22. Retrieved 2016-09-24. Legendre, Matthieu; Bartoli, Julia; Shmakova, Lyubov; Jeudy, Sandra; Labadie, Karine; Adrait, Annie; Lescot, Magali; Poirot, Olivier; Bertaux, Lionel; Bruley, Christophe; Couté, Yohann (2014). "Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology". Proceedings of the National Academy of Sciences of the United States of America. 111 (11): 4274–4279. Bibcode:2014PNAS..111.4274L. doi:10.1073/pnas.1320670111. ISSN 0027-8424. JSTOR 23771019. PMC 3964051. PMID 24591590. Legendre, Matthieu; Lartigue, Audrey; Bertaux, Lionel; Jeudy, Sandra; Bartoli, Julia; Lescot, Magali; Alempic, Jean-Marie; Ramus, Claire; Bruley, Christophe; Labadie, Karine; Shmakova, Lyubov (2015). "In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba". Proceedings of the National Academy of Sciences of the United States of America. 112 (38): E5327–E5335. Bibcode:2015PNAS..112E5327L. doi:10.1073/pnas.1510795112. ISSN 0027-8424. JSTOR 26465169. PMC 4586845. PMID 26351664. Kudryashova, E. B.; Chernousova, E. Yu.; Suzina, N. E.; Ariskina, E. V.; Gilichinsky, D. A. (2013-05-01). "Microbial diversity of Late Pleistocene Siberian permafrost samples". Microbiology. 82 (3): 341–351. doi:10.1134/S0026261713020082. ISSN 1608-3237. S2CID 2645648. Isachenkov, Vladimir (February 20, 2012), "Russians revive Ice Age flower from frozen burrow", Phys.Org, archived from the original on 2016-04-24, retrieved 2016-04-26 Fang, Hsai-Yang (1990-12-31). Foundation Engineering Handbook. Springer Science & Business Media. p. 735. ISBN 978-0-412-98891-2. Clarke, Edwin S. (2007). Permafrost Foundations—State of the Practice. Monograph Series. American Society of Civil Engineers. ISBN 978-0-7844-0947-3. Woods, Kenneth B. (1966). Permafrost International Conference: Proceedings. National Academies. pp. 418–57. Sanger, Frederick J.; Hyde, Peter J. (1978-01-01). Permafrost: Second International Conference, July 13-28, 19737: USSR Contribution. National Academies. p. 786. ISBN 9780309027465. "Diesel fuel spill in Norilsk in Russia's Arctic contained". TASS. Moscow, Russia. 5 June 2020. Retrieved 7 June 2020. Max Seddon (4 June 2020), "Siberia fuel spill threatens Moscow's Arctic ambitions", Financial Times Ivan Nechepurenko (5 June 2020), "Russia Declares Emergency After Arctic Oil Spill", New York Times