Gaussova konstánta [gáusova ~] (oznaka G) je v matematiki konstanta, določena kot obratna vrednost aritmetično-geometrične sredine števila 1 in kvadratnega korena števila 2 (OEIS A014549):

Imenuje se po Carlu Friedrichu Gaussu, ki je 30. maja 1799 odkril zvezo:

tako, da je:

kjer je funkcija Β.

Gaussove konstante se ne sme zamenjevati z Gaussovo gravitacijsko konstanto.

Povezava z drugimi konstantami

uredi

Z Gaussovo konstanto se lahko izrazi funkcijo Γ za argument 1/4:

 

Ker sta π in Γ(1/4) algebrsko neodvisna, kjer je Γ(1/4) iracionalno število, je Gaussova konstanta transcendentna. Transcendentnost Gaussove konstante je leta 1937 dokazal Theodor Schneider.[1]

Lemniskatini konstanti

uredi

S pomočjo Gaussove konstante se lahko določi lemniskatini konstanti:

 
 

ki se pojavljata pri določevanju dolžine loka (Bernoullijeve) lemniskate. Tu je M obratna vrednost Gaussove konstante (OEIS A053004):

 

Gauss je izvirno obravnaval prvo lemniskatino konstanto   in jo označeval z ϖ, po analogiji z vrednostima integralov:

  (OEIS A062539),
 

Algebrsko neodvisnost   in   od   je leta 1975 pokazal Gregory Chudnovsky.[2][3]

Druge formule

uredi

Formula za G z Jacobijevo funkcijo ϑ je:

 

ter tudi s hitro konvergentno neskončno vrsto:

 

Gaussova konstanta je podana tudi z neskončnim produktom:

 

Pojavi se pri izračunavanju integralov:

 
 

Neskončni verižni ulomek Gaussove konstante je (OEIS A053002):

 

Ker Gaussova konstanta G ni kvadratno iracionalno število, njen verižni ulomek ni periodičen.

Glej tudi

uredi

Sklici

uredi
  • Chudnovsky, Gregory (1975), »Algebraic independence of constants connected with the functions of analysis«, Notices of the AMS, 22: A-486
  • Chudnovsky, Gregory (1984), Contributions to the theory of transcendental numbers, Ameriško matematično društvo, ISBN 0-8218-1500-8
  • Schneider, Theodor (1937), »Arithmetische Untersuchungen elliptischer Integrale«, Mathematische Annalen, 113: 1–13

Zunanje povezave

uredi