Deltaeder

Deltaeder je polieder, ki ima za stranske ploskve same enakostranične trikotnike.

Prisekani tetraeder, ki ima šestkotnike razdeljene v trikotnike. Ta oblika ni deltaeder, ker koplanarne stranske ploskve po definiciji niso dovoljene.

Osem konveksnih deltaedrovUredi

Ime Slika Stranske ploskve Robovi Oglišča Konfiguracije oglišča Simetrijska grupa
pravilni tetraeder   4 6 4 4 × 33  
tristrana bipiramida   6 9 5 2 × 33
3 × 34
 
pravilni oktaeder   8 12 6 6 × 34  
petstrana bipiramida   10 15 7 5 × 34
2 × 35
 
prirezan disfenoid   12 18 8 4 × 34
4 × 35
 
trojno povečana tristrana prizma   14 21 9 3 × 34
6 × 35
 
giro podaljšana kvadratna bipiramida   16 24 10 2 × 34
8 × 35
 
pravilni ikozaeder   20 30 12 12 × 35  

Trije od deltaedrov so platonska telesa. To so

  • deltaeder s 4 stranskimi ploskvami (tetraeder), kjer se po tri stranske ploskve srečajo v vsakem oglišču
  • deltaeder z osmimi stranskimi ploskvami (oktaeder) pri katerem se štiri stranske ploskve srečajo v vsakem oglišču
  • deltaeder z dvajsetimi stranskimi ploskvami (ikozaeder) pri katerem se pet stranskih ploskev sreča v vsakem vsakem oglišču.

V deltaedru s šestimi stranskimi ploskvami imajo nekatera oglišča stopnjo 3 in nekatera stopnjo 4. V deltaedru s 16 stranskimi ploskvami imajo nekatera oglišča stopnjo 4 in nekatera stopnjo 5. Teh pet nepravilnih deltaedrov pripada Johnsonovim telesom. To so nepravilni mnogokotniki za stranske ploskve.

Deltaedri obdržijo svojo obliko tudi, če so robovi prosti tako, da se lahko vrtijo okoli oglišč tako, da so koti med robovi tekoči. Vsi poliedri nimajo te lastnosti. Zgled:če sprostimo nekaj kotov kocke, lahko [[kocka|kocko] spremenimo v prizmo brez pravih kotov.

Prav tako ne obstojajo nekonveksni deltaedri z 18 stranskimi ploskvami, ker bi se moralo v oglišču srečati šest stranskih ploskev. S tem bi ustvarili neki koplanarni trikotnik. Takšen polieder lahko obstoja samo z nepravilnimi trikotniki (glej oktaeder)

Nekonveksne oblikeUredi

Obstoja neskončno veliko nekonveksnih oblik. Nekaj primerov deltaedrov s sekajočimi se stranskimi ploskvami:

Ostale nekonveksne deltaedre lahko generiramo z dodajanjem enakostraničnih piramid na stranske ploskve vseh petih pravilnih poliedrov:

Prav tako pa tudi z dodajanjem obrnjenih piramid na stranske ploskve:

 
veliki ikozaeder
(20 sekajočih se trikotnikov)
 
stela oktangula
(24 trikotnikov)
 
izkopan dodekaeder
(60 trikotnikov)
 
toroidni polieder
(48 trikotnikov)

Zunanje povezaveUredi

  • Weisstein, Eric Wolfgang. "Deltahedron". MathWorld (angleščina).
  • Osem konveksnih deltaedrov (angleško)
  • Deltaeder (angleško)