Cauchyjeva porazdelitev
Cauchyjeva porazdelítev (tudi Cauchy-Lorentzeva porazdelitev) [košíjeva ~/koší-lórencova ~] je družina zveznih verjetnostnih porazdelitev z dvema parametroma (lokacije in merila).
![]() Vijolična krivulja je standardna Cauchyjeva porazdelitev | |
![]() | |
Zapis | |
---|---|
parametri | parameter lokacije (realno število) parameter merila (realno število) |
Interval | |
gostota verjetnosti (pdf) | |
zbirna funkcija verjetnosti (cdf) | |
kvantil | |
pričakovana vrednost | nedoločena |
mediana | |
modus | |
varianca | nedoločena (neskončna) |
nesimetričnost | nedoločena |
sploščenost | nedoločena |
entropija | |
funkcija generiranja momentov (mgf) | ne obstaja |
karakteristična funkcija |
Imenuje se po francoskem inženirju in matematiku Augustinu Louisu Cauchyju (1789–1857) in nizozemskem fiziku Hendriku Antoonu Lorentzu (1853–1928). Porazdelitev je znana kot Cauchyjeva porazdelitev, med fiziki pa je znana kot Lorentzeva porazdelitev ali (nerelativistična) Breit-Wignerjeva porazdelitev.
Značilnosti porazdelitveUredi
Funkcija gostote verjetnostiUredi
Gostota verjetnosti za Cauchyjevo porazdelitev je:
Zbirna funkcija verjetnostiUredi
Zbirna funkcija verjetnosti je enaka:
Pričakovana vrednostUredi
Pričakovana vrednost ni določena.
VariancaUredi
Varianca ni določena.
Funkcija generiranja momentovUredi
Funkcija generiranja momentov ni določena.
Standardna Cauchyjeva porazdelitevUredi
Standardno Cauchyjevo porazdelitev se dobi takrat, ko je in . V tem primeru je funkcija gostote verjetnosti enaka:
Povezave z drugimi porazdelitvamiUredi
- Razmerje med dvema neodvisnima standardnima normalnima spremenljivkama ima Cauchyjevo porazdelitev oziroma , kar pomeni, da je Cauchyjeva porazdelitev kvocientna porazdelitev
- Standardna Cauchyjeva porazdelitev je poseben primer Študentove t porazdelitve z eno prostostno stopnjo.
- Če se slučajna spremenljivka podreja stabilni porazdelitvi , potem ima slučajna spremenljivka Cauchyjevo porazdelitev .
Glej tudiUredi
Zunanje povezaveUredi
Wikimedijina zbirka ponuja več predstavnostnega gradiva o temi: Cauchyjeva porazdelitev |