Slučajna spremenljivka

Slučajna spremenljivka je količina, ki nastopi kot rezultat poskusa (dogodka), kjer je možnih več izidov. Pri tem pa pojavitev katerekoli vrednosti iz danega območja predstavlja slučajno vrednost. Pojem slučajna spremenljivka se uporablja v statistiki in za opisovanje stohastičnih pojavov.

Poznamo dva pomembna razreda slučajnih spremenljivk, diskretne in zvezne slučajne spremenljivke. Obstajajo pa tudi slučajne spremenljivke, ki niso ne diskretne ne zvezne.

Definicija

uredi

Slučajna spremenljivka   na verjetnostnem prostoru   je merljiva funkcija  , za katero velja   za vse  . Slučajna spremenljivka se pogosto označuje z velikimi latiničnimi črkami, kot so  .

Porazdelitvena funkcija verjetnosti   slučajne spremenljivke   je funkcija, ki vsaki realni vrednosti   priredi verjetnost dogodka  . To pomeni, da velja:

 .

Za porazdelitveno funkcijo velja   in  , kakor tudi to, da je nepadajoča funkcija.

Diskretne slučajne spremenljivke

uredi

Porazdelitveni zakon diskretne slučajne spremenljivke se imenuje diskretna porazdelitev. Kadar za diskretno slučajno spremenljivko   poznamo porazdelitveni zakon, ga zapišemo v obliki:

 

kjer je  . Pri tem velja:   in   za vse  . Ta oblika zakona velja za diskretne slučajne spremenljivke, ki zavzamejo končno mnogo vrednosti. V primeru diskretnih slučajnih spremenljivk, ki zavzamejo neskončno mnogo vrednosti, recimo  , verjetnostno porazdelitev lahko podamo z eksplicitnim predpisom vrednosti   za vse  .

Bernoullijeve slučajne spremenljivke

uredi

Slučajnim spremenljivkam z vrednostmi v   pravimo Bernoullijeve slučajne spremenljivke ali indikatorji. Naj bo  . Označimo  .

 

 

Primer: V mrzlem jutru bo avto vžgal z verjetnostjo  .

Geometrijska porazdelitev

uredi

Pravimo, da ima X geometrijsko porazdelitev s parametrom p є [0, 1](q = 1 - p), če velja

• Slika(X) = {1,2,...} in

• P(X = k) = pqk-1 za vse k = 1,2,3...


Označimo X ~ Geom(p). Spet dobimo verjetnostno porazdelitev, saj je

 

(Da bo druga enakost veljala tudi v primeru p=1, se zedinimo, da je 00 = 1.)

Porazdelitvena funkcija diskretne slučajne spremenljivke je funkcija F(x), določena z

 

Zvezne slučajne spremenljivke

uredi

Definicija : Slučajna spremenljivka X je zvezna, če njeno porazdelitveno funkcijo Fx lahko zapišemo v obliki

 

kjer je fx ≥ 0 nenegativna funkcija. Taki funkciji fx pravimo gostota slučajne spremenljivke X.

Za gostoto fx velja, da je fx (x) = F'x (x), če odvod Fx v točki x obstaja. V točkah x, kjer odvod ne obstaja, pa je gostota enaka fx (x) = 0.

Zgled: Enakomerna porazdelitev na intervalu

Enakomerna porazdelitev na intervalu [a,b] ima gostoto

 

in porazdelitveno funkcijo

 

Zgled: Eksponentna porazdelitev

Eksponentna porazdelitev s parametrom λ > 0 ima gostoto

 

in porazdelitveno funkcijo

 

Zgled: Splošna normalna porazdelitev

Podana formula predstavlja funkcijo gostoto verjetnosti.

 

za vse x-e, ki so v množici realnih števil.


 


Normalno porazdelitev označimo z N(μ,σ2). V primeru μ = 0, σ = 1 jo imenujemo standardna normalna porazdelitev. Standardna normalna porazdelitev je porazdelitev vrednosti s povprečjem (aritmetično sredino) 0 in standardnim odklonom 1.