Calermanova matrika funkcije
f
(
x
)
{\displaystyle f(x)\,}
je določena z
M
[
f
]
j
k
=
1
k
!
[
d
k
d
x
k
(
f
(
x
)
)
j
]
x
=
0
{\displaystyle M[f]_{jk}={\frac {1}{k!}}\left[{\frac {d^{k}}{dx^{k}}}(f(x))^{j}\right]_{x=0}}
pri tem pa velja
(
f
(
x
)
)
j
=
∑
k
=
0
∞
M
[
f
]
j
k
x
k
.
{\displaystyle (f(x))^{j}=\sum _{k=0}^{\infty }M[f]_{jk}x^{k}.}
Tako lahko zapišemo določanje funkcije
f
(
x
)
{\displaystyle f(x)\,}
kot
f
(
x
)
=
∑
k
=
0
∞
M
[
f
]
1
,
k
x
k
.
{\displaystyle f(x)=\sum _{k=0}^{\infty }M[f]_{1,k}x^{k}.}
,
kar pa je skalarni produkt prve vrstice matrike
M
[
f
]
{\displaystyle M[f]}
z
vektorjem
[
1
,
x
,
x
2
,
x
3
,
.
.
.
]
τ
{\displaystyle \left[1,x,x^{2},x^{3},...\right]^{\tau }}
.
Množenje z drugo vrstico matrike
M
[
f
]
{\displaystyle M[f]}
nam da drugo potenco funkcije
f
(
x
)
{\displaystyle f(x)\,}
f
(
x
)
2
=
∑
k
=
0
∞
M
[
f
]
2
,
k
x
k
.
{\displaystyle f(x)^{2}=\sum _{k=0}^{\infty }M[f]_{2,k}x^{k}.}
.
Lahko pa določimo tudi ničelno potenco funkcije
f
(
x
)
{\displaystyle f(x)\,}
. V matriki
M
[
f
]
{\displaystyle M[f]}
predpostavimo, da vrstica 0 vsebuje ničle povsod, razen na prvem mestu. To nam da
f
(
x
)
0
=
1
=
∑
k
=
0
∞
M
[
f
]
0
,
k
x
k
=
1
+
∑
k
=
1
∞
0
∗
x
k
{\displaystyle f(x)^{0}=1=\sum _{k=0}^{\infty }M[f]_{0,k}x^{k}=1+\sum _{k=1}^{\infty }0*x^{k}}
Skalarni produkt matrike
M
[
f
]
{\displaystyle M[f]}
z vektorjem
[
1
,
x
,
x
2
,
x
3
,
.
.
.
]
τ
{\displaystyle \left[1,x,x^{2},x^{3},...\right]^{\tau }}
nam da vektor
M
[
f
]
∗
[
1
,
x
,
x
2
,
x
3
,
.
.
.
]
τ
=
[
1
,
f
(
x
)
,
(
f
(
x
)
)
2
,
(
f
(
x
)
)
3
,
.
.
.
]
τ
{\displaystyle M[f]*\left[1,x,x^{2},x^{3},...\right]^{\tau }=\left[1,f(x),(f(x))^{2},(f(x))^{3},...\right]^{\tau }\,}
.
Bellova matrika funkcije
f
(
x
)
{\displaystyle f(x)\,}
je določena kot
B
[
f
]
j
k
=
1
j
!
[
d
j
d
x
j
(
f
(
x
)
)
k
]
x
=
0
{\displaystyle B[f]_{jk}={\frac {1}{j!}}\left[{\frac {d^{j}}{dx^{j}}}(f(x))^{k}\right]_{x=0}}
pri tem pa velja
(
f
(
x
)
)
k
=
∑
j
=
0
∞
B
[
f
]
j
k
x
j
{\displaystyle (f(x))^{k}=\sum _{j=0}^{\infty }B[f]_{jk}x^{j}}
To pa pomeni, da je Bellova matrika transponirana Carlemanova matrika.
Carlemanova matrika konstante je:
M
[
a
]
=
(
1
0
0
⋯
a
0
0
⋯
a
2
0
0
⋯
⋮
⋮
⋮
⋱
)
{\displaystyle M[a]=\left({\begin{array}{cccc}1&0&0&\cdots \\a&0&0&\cdots \\a^{2}&0&0&\cdots \\\vdots &\vdots &\vdots &\ddots \end{array}}\right)}
Carlemanova matrika identične funkcije je:
M
x
[
x
]
=
(
1
0
0
⋯
0
1
0
⋯
0
0
1
⋯
⋮
⋮
⋮
⋱
)
{\displaystyle M_{x}[x]=\left({\begin{array}{cccc}1&0&0&\cdots \\0&1&0&\cdots \\0&0&1&\cdots \\\vdots &\vdots &\vdots &\ddots \end{array}}\right)}
Carlemanova matrika dodane konstante je:
M
x
[
a
+
x
]
=
(
1
0
0
⋯
a
1
0
⋯
a
2
2
a
1
⋯
⋮
⋮
⋮
⋱
)
{\displaystyle M_{x}[a+x]=\left({\begin{array}{cccc}1&0&0&\cdots \\a&1&0&\cdots \\a^{2}&2a&1&\cdots \\\vdots &\vdots &\vdots &\ddots \end{array}}\right)}
Carlemanova matrika zmnožka s konstanto je:
M
x
[
c
x
]
=
(
1
0
0
⋯
0
c
0
⋯
0
0
c
2
⋯
⋮
⋮
⋮
⋱
)
{\displaystyle M_{x}[cx]=\left({\begin{array}{cccc}1&0&0&\cdots \\0&c&0&\cdots \\0&0&c^{2}&\cdots \\\vdots &\vdots &\vdots &\ddots \end{array}}\right)}
Carlemanova matrika linearne funkcije je:
M
x
[
a
+
c
x
]
=
(
1
0
0
⋯
a
c
0
⋯
a
2
2
a
c
c
2
⋯
⋮
⋮
⋮
⋱
)
{\displaystyle M_{x}[a+cx]=\left({\begin{array}{cccc}1&0&0&\cdots \\a&c&0&\cdots \\a^{2}&2ac&c^{2}&\cdots \\\vdots &\vdots &\vdots &\ddots \end{array}}\right)}
Carlemanova matrika funkcije
f
(
x
)
=
∑
k
=
1
∞
f
k
x
k
{\displaystyle f(x)=\sum _{k=1}^{\infty }f_{k}x^{k}}
je:
M
[
f
]
=
(
1
0
0
⋯
0
f
1
f
2
⋯
0
0
f
1
2
⋯
⋮
⋮
⋮
⋱
)
{\displaystyle M[f]=\left({\begin{array}{cccc}1&0&0&\cdots \\0&f_{1}&f_{2}&\cdots \\0&0&f_{1}^{2}&\cdots \\\vdots &\vdots &\vdots &\ddots \end{array}}\right)}
Carlemanova matrika funkcije
f
(
x
)
=
∑
k
=
0
∞
f
k
x
k
{\displaystyle f(x)=\sum _{k=0}^{\infty }f_{k}x^{k}}
je:
M
[
f
]
=
(
1
0
0
⋯
f
0
f
1
f
2
⋯
f
0
2
2
f
0
f
1
f
1
2
⋯
⋮
⋮
⋮
⋱
)
{\displaystyle M[f]=\left({\begin{array}{cccc}1&0&0&\cdots \\f_{0}&f_{1}&f_{2}&\cdots \\f_{0}^{2}&2f_{0}f_{1}&f_{1}^{2}&\cdots \\\vdots &\vdots &\vdots &\ddots \end{array}}\right)}
.