Bellova vrsta
Bellova vrsta je v matematiki formalna potenčna vrsta, s katero se proučujejo značilnosti aritmetičnih funkcij. Vrste je uvedel, proučeval in razvil Eric Temple Bell.
Za dano aritmetično funkcijo in praštevilo , je formalna potenčna vrsta , imenovana Bellova vrsta modulo , določena kot:
Multiplikativni funkciji sta enaki, če so enake vse njune Bellove vrste. To dejstvo se včasih imenuje izrek edinstvenosti. Za dani multiplikativni funkciji in , velja , če in samo če:
- za vsa praštevila .
Dve vrsti se lahko množi (izrek o množenju): za poljubni dve aritmetični funkciji in naj je njuna Dirichletova konvolucija. Za vsako praštevilo potem velja:
V posebnem primeru je preprosto najti Bellovo vrsti za Dirichletov inverz.
Če je popolnoma multiplikativna (multiplikativna za vsa pozitivna cela števila, ne le za tuja), velja:
Zgledi
urediNekaj Bellovih vrst za znane aritmetične funkcije:
- Möbiusova funkcija -
- Eulerjeva funkcija -
- multiplikativna enakost Dirichletove konvolucije -
- Liouvillova funkcija -
- potenčna funkcija Idk - Tukaj je Idk popolnoma multiplikativna funkcija .
- funkcija števila deliteljev -
Viri
uredi- Apostol, Tom Mike (2010). Introduction to analytic number theory. Undergraduate Texts in Mathematics. New York: Springer-Verlag. COBISS 18018312. ISBN 978-1-4419-2805-4. MR 0434929. Zbl 0335.10001.