Kongruenca
- Za kongruenco v geometriji glej: Skladnost
Kongruénca oziroma kongruénčna relácija je ekvivalenčna relacija.
Celi števili a in b sta kongruentni po modulu m (m je naravno število), če in samo če m deli razliko števil a in b.
DefinicijaUredi
, ,
Primer:
Lastnosti kongruencUredi
Kongruenca je ekvivalenčna relacija, velja namreč:
Pravila pri računanju s kongruencamiUredi
Iz definicije sledi da lahko kongruentna števila ali člene vedno zamenjujemo med seboj.
Naj za vse primere velja:
SEŠTEVANJE kongruencUredi
Zgoraj pridobljeni enačbi seštejemo:
Množenje kongruencUredi
Množenje kongruenc s celim številomUredi
Potenciranje kongruencUredi
Ta izrek je le posebni primer izreka o množenju kongruenc. Torej n-krat pomnožimo kongruenco samo s sabo in izrek je dokazan. Je pa ta izrek kot boste videli v nadaljevanju zelo pomemben.
Uporaba kongruencUredi
Kongruence so uporabne predvsem v nalogah, kjer nastopajo števila prevelika za računanje z njimi brez računalnika. Tipične naloge, ki se jih navadno lotimo s kongruencami so:
- dokazovanje ali spodbijanje deljivosti
- ugotavljanje zadnje števke
- ugotavljenje ostanka pri deljenju z nekim številom
- uporaba v diofantskih enačbah
Primer nalogeUredi
- S katero števko se konča ?
Ker iščemo zadnjo števko, gledamo število po modulu m=10. Velja seveda:
ali
in
Ker je 2005 = 4 * 501 + 1, velja
ali
pomnožimo obe strani s tri in to je rezultat
- .