Möbiusov trak
Möbiusov trák [mébijusov] (oziroma Möbiusova ploskev) je v topologiji (prva odkrita) enostranska in neorientabilna ploskev z robom. Imenuje se po nemškem matematiku in astronomu Augustu Ferdinandu Möbiusu, ki je bil s tem odkritjem eden od utemeljiteljev sodobne topologije. Neodvisno od njega je to ploskev istega leta 1858 proučeval tudi nemški matematik Johann Benedict Listing.
Značilnosti
urediMöbiusov trak je zgled za neorientabilno ploskev. V vsaki točki se lahko postavi dve normali, ne da pa se na traku ločiti dveh normiranih normalnih polj. Če se stopi nanj v kaki ekvatorialni točki, se zravna po eni od normalnih smeri, recimo navzgor in se napoti po njegovem ravniku, se vrne v začetno točko, toda obrnjeno navzdol. Polje se zvezno spreminja vzdolž poti in po obhodu, ob povratku v začetno točko, zavzame v njej nasprotno vrednost. Zvezno polje, v vsaki točki natanko določeno, tega ne more storiti. Na Möbiusovem traku ni polja, ki bi govorilo o usmerjenosti. Lepo sliko Möbiusovega traku se dobi, če se ga riše v parametričnih koordinatah:
S tem se dobi Möbiusov trak širine 1, katerega središčni krog ima polmer 1, leži na ravnini x-y in ima središče v (0, 0, 0). Parameter u teče okrog traku, v pa od enega robu do drugega.
V cilindričnih polarnih koordinatah se lahko Möbiusov trak zapiše z enačbo: