Möbiusov trák [mébijusov] (oziroma Möbiusova ploskev) je v topologiji (prva odkrita) enostranska in neorientabilna ploskev z robom. Imenuje se po nemškem matematiku in astronomu Augustu Ferdinandu Möbiusu, ki je bil s tem odkritjem eden od utemeljiteljev sodobne topologije. Neodvisno od njega je to ploskev istega leta 1858 proučeval tudi nemški matematik Johann Benedict Listing.

Möbiusov trak
Starorimski mozaik z Möbiusovim trakom

Značilnosti

uredi

Möbiusov trak je zgled za neorientabilno ploskev. V vsaki točki se lahko postavi dve normali, ne da pa se na traku ločiti dveh normiranih normalnih polj. Če se stopi nanj v kaki ekvatorialni točki, se zravna po eni od normalnih smeri, recimo navzgor in se napoti po njegovem ravniku, se vrne v začetno točko, toda obrnjeno navzdol. Polje se zvezno spreminja vzdolž poti in po obhodu, ob povratku v začetno točko, zavzame v njej nasprotno vrednost. Zvezno polje, v vsaki točki natanko določeno, tega ne more storiti. Na Möbiusovem traku ni polja, ki bi govorilo o usmerjenosti. Lepo sliko Möbiusovega traku se dobi, če se ga riše v parametričnih koordinatah:

 
 
 

S tem se dobi Möbiusov trak širine 1, katerega središčni krog ima polmer 1, leži na ravnini x-y in ima središče v (0, 0, 0). Parameter u teče okrog traku, v pa od enega robu do drugega.

V cilindričnih polarnih koordinatah   se lahko Möbiusov trak zapiše z enačbo:

 

Glej tudi

uredi

Zunanje povezave

uredi
  • Visual Math[mrtva povezava] Animacija
  • Weisstein, Eric Wolfgang. »Moebius Strip«. MathWorld.