Kvadrátno iracionálno števílo (redkeje tudi kvadrátni súrd ) je v matematiki algebrsko iracionalno število , ki je rešitev kakšne kvadratne enačbe z racionalnimi koeficienti. Ker se lahko iz kvadratne enačbe ulomke poniči z množenjem obeh strani z njihovima skupnima imenovalcema , se lahko reče, da je kvadratno iracionalno število koren kvadratne enačbe:
k
x
2
+
m
x
+
n
=
0
{\displaystyle kx^{2}+mx+n=0\!\,}
s celimi koeficienti
k
{\displaystyle k\,}
,
m
{\displaystyle m\,}
in
n
{\displaystyle n\,}
in z od nič različno diskriminanto
m
2
−
4
k
n
{\displaystyle m^{2}-4kn\,}
. Kvadratna iracionalna števila so oblike:
c
,
(
c
>
1
)
{\displaystyle {\sqrt {c}},\qquad (c>1)\!\,}
za cela števila c deljiva brez kvadrata . Vsako kvadratno iracionalno število pa se lahko v splošnem zapiše kot:
a
±
b
c
d
,
a
,
b
,
c
,
d
∈
Z
,
(
a
,
b
>
0
,
c
>
1
,
d
≠
0
,
d
|
a
2
−
c
)
,
{\displaystyle {\frac {a\pm b{\sqrt {c}}}{d}},\qquad a,b,c,d\in \mathbb {Z} ,\qquad (a,b>0,c>1,d\neq 0,d|a^{2}-c)\!\,,}
kjer
c
{\displaystyle c\,}
ni popolni kvadrat .
To pomeni, da je moč njihove množice enaka množici urejenih trojic celih števil, in je zaradi tega števno neskončna .
Kvadratna iracionalna števila z danim
c
{\displaystyle c\,}
tvorijo obseg , ki se imenuje kvadratni obseg .
Verižni ulomki kvadratnih iracionalnih števil
uredi
Kvadratna iracionalna števila so posebna števila, še posebej v povezavi z verižnimi ulomki . Za vsa in edino za kvadratna iracionalna števila je razvoj v verižni ulomek periodičen . Na primer števila deljiva brez kvadrata:
2
=
1
,
4142
…
=
[
1
;
2
,
…
]
,
{\displaystyle {\sqrt {2}}=1,4142\ldots =[1;2,\ldots ]\!\,,}
3
=
1
,
7320
…
=
[
1
;
1
,
2
,
…
]
,
{\displaystyle {\sqrt {3}}=1,7320\ldots =[1;1,2,\ldots ]\!\,,}
5
=
2
,
2360
…
=
[
2
;
4
,
…
]
,
{\displaystyle {\sqrt {5}}=2,2360\ldots =[2;4,\ldots ]\!\,,}
6
=
2
,
4494
…
=
[
2
;
2
,
4
,
…
]
,
{\displaystyle {\sqrt {6}}=2,4494\ldots =[2;2,4,\ldots ]\!\,,}
7
=
2
,
6457
…
=
[
2
;
1
,
1
,
1
,
4
,
…
]
,
{\displaystyle {\sqrt {7}}=2,6457\ldots =[2;1,1,1,4,\ldots ]\!\,,}
10
=
3
,
1622
…
=
[
3
;
6
,
…
]
,
{\displaystyle {\sqrt {10}}=3,1622\ldots =[3;6,\ldots ]\!\,,}
11
=
3
,
3166
…
=
[
3
;
3
,
6
,
…
]
,
{\displaystyle {\sqrt {11}}=3,3166\ldots =[3;3,6,\ldots ]\!\,,}
13
=
3
,
6055
…
=
[
3
;
1
,
1
,
1
,
1
,
6
,
…
]
,
{\displaystyle {\sqrt {13}}=3,6055\ldots =[3;1,1,1,1,6,\ldots ]\!\,,}
14
=
3
,
7416
…
=
[
3
;
1
,
2
,
1
,
6
…
]
,
{\displaystyle {\sqrt {14}}=3,7416\ldots =[3;1,2,1,6\ldots ]\!\,,}
15
=
3
,
8729
…
=
[
3
;
1
,
6
,
…
]
.
{\displaystyle {\sqrt {15}}=3,8729\ldots =[3;1,6,\ldots ]\!\,.}
ali števila deljiva s kvadratom, ki niso kvadratna števila (OEIS A051144 ):
8
=
2
2
=
2
,
8284
…
=
[
2
;
1
,
4
,
…
]
,
{\displaystyle {\sqrt {8}}=2{\sqrt {2}}=2,8284\ldots =[2;1,4,\ldots ]\!\,,}
12
=
2
3
=
3
,
4641
…
=
[
3
;
2
,
6
,
…
]
,
{\displaystyle {\sqrt {12}}=2{\sqrt {3}}=3,4641\ldots =[3;2,6,\ldots ]\!\,,}
18
=
3
2
=
4
,
2426
…
=
[
4
;
4
,
8
,
…
]
,
{\displaystyle {\sqrt {18}}=3{\sqrt {2}}=4,2426\ldots =[4;4,8,\ldots ]\!\,,}
20
=
2
5
=
4
,
4721
…
=
[
4
;
2
,
8
,
…
]
.
{\displaystyle {\sqrt {20}}=2{\sqrt {5}}=4,4721\ldots =[4;2,8,\ldots ]\!\,.}
Vsi verižni ulomki kvadratnih korenov števil, ki niso popolni kvadrati, imajo posebno obliko periodičnosti, palindromni niz števk:
prazen za števila oblike
c
=
n
2
+
1
;
n
>
0
{\displaystyle c=n^{2}+1;\ n>0\!\,}
(OEIS A002522 ):
2
{\displaystyle {\sqrt {2}}\!\,}
,
5
{\displaystyle {\sqrt {5}}\!\,}
,
10
{\displaystyle {\sqrt {10}}\!\,}
,
17
{\displaystyle {\sqrt {17}}\!\,}
,
26
{\displaystyle {\sqrt {26}}\!\,}
,
37
{\displaystyle {\sqrt {37}}\!\,}
,
50
{\displaystyle {\sqrt {50}}\!\,}
,
65
{\displaystyle {\sqrt {65}}\!\,}
, ..., od katerih so praštevila (OEIS A002496 ):
2
{\displaystyle {\sqrt {2}}\!\,}
,
5
{\displaystyle {\sqrt {5}}\!\,}
,
17
{\displaystyle {\sqrt {17}}\!\,}
,
37
{\displaystyle {\sqrt {37}}\!\,}
,
101
{\displaystyle {\sqrt {101}}\!\,}
,
197
{\displaystyle {\sqrt {197}}\!\,}
,
257
{\displaystyle {\sqrt {257}}\!\,}
, ... in sestavljena (OEIS A134406 ):
10
{\displaystyle {\sqrt {10}}\!\,}
,
26
{\displaystyle {\sqrt {26}}\!\,}
,
50
{\displaystyle {\sqrt {50}}\!\,}
,
65
{\displaystyle {\sqrt {65}}\!\,}
,
82
{\displaystyle {\sqrt {82}}\!\,}
,
122
{\displaystyle {\sqrt {122}}\!\,}
,
145
{\displaystyle {\sqrt {145}}\!\,}
,
170
{\displaystyle {\sqrt {170}}\!\,}
, ...
Za ta števila tako velja:
c
=
[
a
0
;
2
a
0
¯
]
.
{\displaystyle {\sqrt {c}}=[a_{0};{\overline {2a_{0}}}]\!\,.}
na primer 1 za
3
{\displaystyle {\sqrt {3}}\,}
, 1,1,1 za
7
{\displaystyle {\sqrt {7}}\,}
, 1,2,1 za
14
{\displaystyle {\sqrt {14}}\,}
, ki mu sledi dvakratnik vodilnega celega števila. Praštevila, ki niso oblike
n
2
+
1
{\displaystyle n^{2}+1\,}
, imajo neprazen niz (OEIS A070303 ):
3
{\displaystyle {\sqrt {3}}\!\,}
,
7
{\displaystyle {\sqrt {7}}\!\,}
,
11
{\displaystyle {\sqrt {11}}\!\,}
,
13
{\displaystyle {\sqrt {13}}\!\,}
,
19
{\displaystyle {\sqrt {19}}\!\,}
,
23
{\displaystyle {\sqrt {23}}\!\,}
,
29
{\displaystyle {\sqrt {29}}\!\,}
,
31
{\displaystyle {\sqrt {31}}\!\,}
,
41
{\displaystyle {\sqrt {41}}\!\,}
,
43
{\displaystyle {\sqrt {43}}\!\,}
,
47
{\displaystyle {\sqrt {47}}\!\,}
,
53
{\displaystyle {\sqrt {53}}\!\,}
,
59
{\displaystyle {\sqrt {59}}\!\,}
,
61
{\displaystyle {\sqrt {61}}\!\,}
,
67
{\displaystyle {\sqrt {67}}\!\,}
, ...
V splošnem tako velja:
c
=
[
a
0
;
a
1
,
a
2
,
…
,
a
2
,
a
1
,
2
a
0
¯
]
.
{\displaystyle {\sqrt {c}}=[a_{0};{\overline {a_{1},a_{2},\dots ,a_{2},a_{1},2a_{0}}}]\!\,.}
Od zgornjih števil, katerih niz je prazen, so deljiva s kvadratom (OEIS A124809 ):
50
=
7
,
0710
…
=
[
7
;
2
⋅
7
¯
]
,
{\displaystyle {\sqrt {50}}=7,0710\ldots =[7;{\overline {2\cdot 7}}]\!\,,}
325
=
18
,
0277
…
=
[
18
;
2
⋅
18
¯
]
,
{\displaystyle {\sqrt {325}}=18,0277\ldots =[18;{\overline {2\cdot 18}}]\!\,,}
1025
=
32
,
0156
…
=
[
32
;
2
⋅
32
¯
]
,
{\displaystyle {\sqrt {1025}}=32,0156\ldots =[32;{\overline {2\cdot 32}}]\!\,,}
1445
=
38
,
0131
…
=
[
38
;
2
⋅
38
¯
]
,
{\displaystyle {\sqrt {1445}}=38,0131\ldots =[38;{\overline {2\cdot 38}}]\!\,,}
itd.
Števila, katerih perioda se začne:
z 2 (OEIS A065005 ):
2
{\displaystyle {\sqrt {2}}\!\,}
,
6
{\displaystyle {\sqrt {6}}\!\,}
,
12
{\displaystyle {\sqrt {12}}\!\,}
,
19
{\displaystyle {\sqrt {19}}\!\,}
,
20
{\displaystyle {\sqrt {20}}\!\,}
,
29
{\displaystyle {\sqrt {29}}\!\,}
,
30
{\displaystyle {\sqrt {30}}\!\,}
, ...,
s 3 (OEIS A065006 ):
11
{\displaystyle {\sqrt {11}}\!\,}
,
28
{\displaystyle {\sqrt {28}}\!\,}
,
40
{\displaystyle {\sqrt {40}}\!\,}
,
53
{\displaystyle {\sqrt {53}}\!\,}
,
69
{\displaystyle {\sqrt {69}}\!\,}
,
86
{\displaystyle {\sqrt {86}}\!\,}
,
87
{\displaystyle {\sqrt {87}}\!\,}
, ...,
s 4 (OEIS A065007 ):
5
{\displaystyle {\sqrt {5}}\!\,}
,
18
{\displaystyle {\sqrt {18}}\!\,}
,
39
{\displaystyle {\sqrt {39}}\!\,}
,
52
{\displaystyle {\sqrt {52}}\!\,}
,
68
{\displaystyle {\sqrt {68}}\!\,}
,
85
{\displaystyle {\sqrt {85}}\!\,}
,
105
{\displaystyle {\sqrt {105}}\!\,}
, ...,
s 5 (OEIS A065008 ):
27
{\displaystyle {\sqrt {27}}\!\,}
,
67
{\displaystyle {\sqrt {67}}\!\,}
,
104
{\displaystyle {\sqrt {104}}\!\,}
,
1255
{\displaystyle {\sqrt {1255}}\!\,}
,
174
{\displaystyle {\sqrt {174}}\!\,}
,
201
{\displaystyle {\sqrt {201}}\!\,}
,
231
{\displaystyle {\sqrt {231}}\!\,}
, ...,
s 6 (OEIS A065009 ):
10
{\displaystyle {\sqrt {10}}\!\,}
,
38
{\displaystyle {\sqrt {38}}\!\,}
,
84
{\displaystyle {\sqrt {84}}\!\,}
,
103
{\displaystyle {\sqrt {103}}\!\,}
,
148
{\displaystyle {\sqrt {148}}\!\,}
,
173
{\displaystyle {\sqrt {173}}\!\,}
,
230
{\displaystyle {\sqrt {230}}\!\,}
, ...,
s 7 (OEIS A065010 ):
51
{\displaystyle {\sqrt {51}}\!\,}
,
124
{\displaystyle {\sqrt {124}}\!\,}
,
200
{\displaystyle {\sqrt {200}}\!\,}
,
229
{\displaystyle {\sqrt {229}}\!\,}
,
329
{\displaystyle {\sqrt {329}}\!\,}
,
366
{\displaystyle {\sqrt {366}}\!\,}
,
447
{\displaystyle {\sqrt {447}}\!\,}
, ...,
z 8 (OEIS A065011 ):
17
{\displaystyle {\sqrt {17}}\!\,}
,
66
{\displaystyle {\sqrt {66}}\!\,}
,
147
{\displaystyle {\sqrt {147}}\!\,}
,
172
{\displaystyle {\sqrt {172}}\!\,}
,
260
{\displaystyle {\sqrt {260}}\!\,}
,
293
{\displaystyle {\sqrt {293}}\!\,}
,
405
{\displaystyle {\sqrt {405}}\!\,}
, ...,
z 9 (OEIS A065012 ):
83
{\displaystyle {\sqrt {83}}\!\,}
,
199
{\displaystyle {\sqrt {199}}\!\,}
,
328
{\displaystyle {\sqrt {328}}\!\,}
,
365
{\displaystyle {\sqrt {365}}\!\,}
,
534
{\displaystyle {\sqrt {534}}\!\,}
,
581
{\displaystyle {\sqrt {581}}\!\,}
,
735
{\displaystyle {\sqrt {735}}\!\,}
, ...
Druga kvadratna iracionalna števila, kjer
c
{\displaystyle c\,}
ni kvadratno število:
(
1
+
2
)
/
2
=
1
,
2071
…
=
[
1
;
4
,
1
,
…
]
,
{\displaystyle (1+{\sqrt {2}})/2=1,2071\ldots =[1;4,1,\ldots ]\!\,,}
(
1
+
3
)
/
2
=
1
,
3660
…
=
[
1
;
2
,
1
,
…
]
,
{\displaystyle (1+{\sqrt {3}})/2=1,3660\ldots =[1;2,1,\ldots ]\!\,,}
(
1
+
5
)
/
2
=
1
,
6180
…
=
[
1
;
1
,
…
]
≡
[
1
;
1
¯
]
{\displaystyle (1+{\sqrt {5}})/2=1,6180\ldots =[1;1,\ldots ]\equiv [1;{\overline {1}}]\!\,}
(število zlatega reza ),
(
1
+
2
)
/
3
=
0
,
8047
…
=
[
0
;
1
,
4
,
8
¯
]
,
{\displaystyle (1+{\sqrt {2}})/3=0,8047\ldots =[0;1,{\overline {4,8}}]\!\,,}
(
1
+
3
)
/
3
=
0
,
9106
…
=
[
0
;
1
,
10
,
5
¯
]
,
{\displaystyle (1+{\sqrt {3}})/3=0,9106\ldots =[0;1,{\overline {10,5}}]\!\,,}
(
1
+
5
)
/
3
=
1
,
0786
…
=
[
1
;
12
,
1
,
2
,
2
,
2
,
1
¯
]
,
{\displaystyle (1+{\sqrt {5}})/3=1,0786\ldots =[1;{\overline {12,1,2,2,2,1}}]\!\,,}
(
1
+
2
)
/
5
=
0
,
4828
…
=
[
0
;
2
,
1
,
4
¯
]
,
{\displaystyle (1+{\sqrt {2}})/5=0,4828\ldots =[0;2,{\overline {1,4}}]\!\,,}
(
1
+
3
)
/
5
=
0
,
5464
…
=
[
0
;
1
,
1
,
4
,
1
,
7
¯
]
,
{\displaystyle (1+{\sqrt {3}})/5=0,5464\ldots =[0;1,{\overline {1,4,1,7}}]\!\,,}
(
1
+
5
)
/
5
=
0
,
6472
…
=
[
0
;
1
,
1
,
1
,
1
,
5
,
22
,
5
¯
]
,
{\displaystyle (1+{\sqrt {5}})/5=0,6472\ldots =[0;1,{\overline {1,1,1,5,22,5}}]\!\,,}
(
1
+
5
)
/
6
=
0
,
5393
…
=
[
0
;
1
,
1
,
5
¯
]
,
{\displaystyle (1+{\sqrt {5}})/6=0,5393\ldots =[0;1,{\overline {1,5}}]\!\,,}
(
1
+
5
)
/
7
=
0
,
4622
…
=
[
0
;
2
,
6
,
7
,
1
,
1
,
1
,
30
,
1
,
1
,
1
,
7
¯
]
,
{\displaystyle (1+{\sqrt {5}})/7=0,4622\ldots =[0;2,{\overline {6,7,1,1,1,30,1,1,1,7}}]\!\,,}
(
1
+
5
)
/
8
=
0
,
4045
…
=
[
0
;
2
,
2
,
8
¯
]
,
{\displaystyle (1+{\sqrt {5}})/8=0,4045\ldots =[0;2,{\overline {2,8}}]\!\,,}
(
1
+
5
)
/
9
=
0
,
3595
…
=
[
0
;
2
,
1
,
3
,
1
,
1
,
3
,
9
¯
]
,
{\displaystyle (1+{\sqrt {5}})/9=0,3595\ldots =[0;2,{\overline {1,3,1,1,3,9}}]\!\,,}
(
1
+
5
)
/
10
=
0
,
3236
…
=
[
0
;
3
,
11
¯
]
,
{\displaystyle (1+{\sqrt {5}})/10=0,3236\ldots =[0;3,{\overline {11}}]\!\,,}
(
2
+
5
)
/
2
=
2
,
1180
…
=
[
2
;
8
,
2
¯
]
,
{\displaystyle (2+{\sqrt {5}})/2=2,1180\ldots =[2;{\overline {8,2}}]\!\,,}
(
42
+
2
)
/
42
=
1
,
0336
…
=
[
1
;
29
,
1
,
2
,
3
,
6
,
3
,
2
,
1
,
58
¯
]
,
{\displaystyle (42+{\sqrt {2}})/42=1,0336\ldots =[1;29,{\overline {1,2,3,6,3,2,1,58}}]\!\,,}
(
42
+
42
)
/
42
=
1
,
1543
…
=
[
1
;
6
,
2
,
12
¯
]
,
{\displaystyle (42+{\sqrt {42}})/42=1,1543\ldots =[1;6,{\overline {2,12}}]\!\,,}
(
4242
+
4242
)
/
4242
=
1
,
0153
…
=
[
1
;
65
,
7
,
1
,
1
,
1
,
8
,
1
,
1
,
1
,
7
,
130
¯
]
.
.
.
{\displaystyle (4242+{\sqrt {4242}})/4242=1,0153\ldots =[1;65,{\overline {7,1,1,1,8,1,1,1,7,130}}]\!\,...}
Če je
c
{\displaystyle c\,}
kvadratno število in
d
>
1
{\displaystyle d>1\,}
, je dano število racionalno , njegov verižni ulomek pa je seveda končen. Na primer:
(
2
+
4
)
/
5
=
4
/
5
=
0
,
8
=
[
0
;
1
,
4
]
,
{\displaystyle (2+{\sqrt {4}})/5=4/5=0,8=[0;1,4]\!\,,}
(
41
+
1764
)
/
42
=
83
/
42
=
1
,
9
761904
¯
=
[
1
;
1
,
41
]
.
{\displaystyle (41+{\sqrt {1764}})/42=83/42=1,9{\overline {761904}}=[1;1,41]\!\,.}
To dejstvo periodičnosti členov verižnih ulomkov sta dokazala Lagrange (1770 ) in Legendre , pred njima pa je obrat dokazal Euler z analizo popolnih količnikov periodičnih verižnih ulomkov – če je ζ pravi periodični verižni ulomek, je ζ kvadratno iracionalno število. Iz samega verižnega ulomka je moč konstruirati kvadratno enačbo s celimi koeficienti, za katere velja ζ.
(
1
+
2
2
)
/
2
=
1
,
9142
…
=
[
1
;
1
,
10
,
1
¯
]
,
{\displaystyle (1+2{\sqrt {2}})/2=1,9142\ldots =[{\overline {1;1,10,1}}]\!\,,}
(
1
+
2
3
)
/
2
=
2
,
2320
…
=
[
2
;
4
,
3
¯
]
,
{\displaystyle (1+2{\sqrt {3}})/2=2,2320\ldots =[2;{\overline {4,3}}]\!\,,}
(
1
+
2
2
)
/
3
=
1
,
2761
…
=
[
1
;
3
,
1
,
1
,
1
,
1
¯
]
,
{\displaystyle (1+2{\sqrt {2}})/3=1,2761\ldots =[{\overline {1;3,1,1,1,1}}]\!\,,}
(
1
+
2
3
)
/
3
=
1
,
4880
…
=
[
1
;
2
,
20
,
2
,
1
,
1
,
4
,
1
¯
]
,
{\displaystyle (1+2{\sqrt {3}})/3=1,4880\ldots =[{\overline {1;2,20,2,1,1,4,1}}]\!\,,}
(
1
+
3
2
)
/
2
=
2
,
6213
…
=
[
2
;
1
,
1
,
1
,
1
,
1
,
3
¯
]
,
{\displaystyle (1+3{\sqrt {2}})/2=2,6213\ldots =[2;{\overline {1,1,1,1,1,3}}]\!\,,}
(
1
+
3
3
)
/
2
=
3
,
0980
…
=
[
3
;
10
,
5
¯
]
,
{\displaystyle (1+3{\sqrt {3}})/2=3,0980\ldots =[3;{\overline {10,5}}]\!\,,}
(
1
+
3
2
)
/
3
=
1
,
7475
…
=
[
1
;
1
,
2
,
1
,
24
,
1
,
2
,
1
,
2
,
12
,
2
¯
]
,
{\displaystyle (1+3{\sqrt {2}})/3=1,7475\ldots =[1;{\overline {1,2,1,24,1,2,1,2,12,2}}]\!\,,}
(
1
+
3
3
)
/
3
=
2
,
0653
…
=
[
2
;
15
,
3
,
2
,
1
,
1
,
30
,
1
,
1
,
2
,
3
¯
]
,
{\displaystyle (1+3{\sqrt {3}})/3=2,0653\ldots =[2;{\overline {15,3,2,1,1,30,1,1,2,3}}]\!\,,}
(
1
+
2
3
)
/
4
=
1
,
1160
…
=
[
1
;
8
,
1
,
1
,
1
,
1
,
1
,
1
¯
]
,
{\displaystyle (1+2{\sqrt {3}})/4=1,1160\ldots =[{\overline {1;8,1,1,1,1,1,1}}]\!\,,}
(
2
+
3
5
)
/
7
=
1
,
2440
…
=
[
1
;
4
,
10
,
4
,
1
,
1
,
2
,
18
,
2
,
1
¯
]
.
.
.
{\displaystyle (2+3{\sqrt {5}})/7=1,2440\ldots =[{\overline {1;4,10,4,1,1,2,18,2,1}}]\!\,...}
Poseben primer kvadratnih iracionalnih števil so rešitve Fermat-Pellove enačbe .