Algebrska struktura

Algébrska struktúra (zastarelo algebrajska ali algebra(j)ična struktura) je v matematiki ime za množico skupaj z (vsaj eno) računsko operacijo, ki je definirana za elemente te množice. Algebrske strukture preučuje abstraktna algebra.

Temelj algebrske strukture se skriva v nekaterih osnovnih značilnostih, ki veljajo za določeno računsko operacijo. Te značilnosti se imenujejo tudi aksiomi algebrske strukture. Algebra v nadaljevanju preučuje značilnosti, ki so posledice aksiomov. Bistvo takega dela je splošnost: če se ugotovi, da ima neka struktura določene značilnosti, se lahko sklepa, da te značilnosti veljajo v splošnem za vsako množico, ki ima takšno strukturo.

Najpomembnejše algebrske struktureUredi

GrupaUredi

Glavni članek: grupa.

Najosnovnejša algebrska struktura je grupa. To je množica M, v kateri se lahko brez omejitev izvaja neko računsko operacijo (tj: za poljubna dva elementa iz M je tudi rezultat operacije vedno element množice M). Operacijo se v splošnem piše z znakom *. Za to operacijo morajo veljati naslednji aksiomi (za vsak a, b, c iz M):

Posebej zanimiv zgled grupe je Abelova grupa. To je grupa v kateri poleg naštetih treh velja še četrti aksiom:

Obstaja veliko konkretnih množic, ki imajo strukturo grupe:

Kolobar in obsegUredi

Za abstraktno algebro so še bolj zanimive množice, v katerih sta definirani dve računski operaciji. Ena od operacij se po navadi imenuje seštevanje in se jo označi z znakom +, druga pa se imenuje množenje in se jo označi z znakom · (ali zaradi splošnosti tudi *).

Táka množica K se imenuje kolobar, če je K za operacijo + Abelova grupa, poleg tega pa za množenje veljata asociativnostni in distributivnostni zakon.

Kolobar, ki vsebuje tudi nevtralni element za množenje, se imenuje kolobar z enoto. Če ima poleg tega vsak element kolobarja (razen elementa 0) svoj inverzni element za množenje, se taka množica imenuje obseg. Obseg, v katerem je množenje komutativno, se imenuje komutativni obseg ali polje.

Znani komutativni obsegi so:

Vektorski prostorUredi

Glavni članek: vektorski prostor.

Nekoliko drugačna struktura z dvema računskima operacijama je vektorski prostor. Gre za posplošitev množice elementarnih trirazsežnih vektorjev).

Vektorski prostor je množica V, ki je za seštevanje Abelova grupa, druga računska operacija pa ni definirana v tej množici, pač pa povezuje elemente množice V z elementi nekega komutativnega obsega F. Ta operacija se imenuje množenje vektorja s skalárjem in mora imeti podobne značilnosti kot ustrezna operacija v množici običajnih vektorjev v ravnini ali v trirazsežnem prostoru.

Zanimive zglede vektorskih prostorov se najde v množici funkcij.

Glej tudiUredi

ViriUredi