Gaussov snop je snop elektromagnetnega valovanja, katerega prečno komponento se opiše z Gaussovo funkcijo. Snope Gaussove oblike se izračuna kot rešitve obosne Helmholzove enačbe, v praksi pa se jih najde predvsem v osnovnem laserskem žarku. Gaussovi snopi se imenujejo po nemškem matematiku in fiziku Carlu Friedrichu Gaussu.

Jakost Gaussovega snopa okrog gorišča 'v časovnem intervalu' kaže dva jakostna vrhova za vsako valovno čelo.
Prečni Gaussov profil laserskega snopa

Matematična oblika

uredi

Amplitudo elektromagnetnega valovanja se zapiše v obliki:

 

kjer je:

  : oddaljenost od osi snopa,
  : vzdolžna koordinata, merjena od najožjega dela snopa (grla),
  : imaginarno število (za katerega velja  ),
  : valovno število
  : širina snopa v grlu

Funkcije   in   se vpeljejo spodaj.

Sorodno se lahko zapiše tudi porazdelitev jakosti snopa:

 

Parametri snopa

uredi
 
Grafični prikaz parametrov

Širina snopa

uredi

Širino snopa  , ki se jo vpelje kot oddaljenost od osi  , pri kateri vrednost električne poljske jakosti pade na   vrednosti na osi, se izrazi kot:

 

pri čemer je za določeno valovno dolžino območje bližnjega polja   enako:

 

Lega, kjer doseže širina snopa minimum, se imenuje grlo. Širina snopa v grlu je  .

Območje bližnjega polja

uredi

Širina snopa v točkah   je:

 

Razdaljo med tema dvema točkama se označi z   in se imenuje območje bližnjega polja ali dolžina grla:

 

Krivinski radij

uredi

Ukrivljenost valovnih čel, ki sestavljajo snop, se opiše s krivinskih radijem  :

 

Pri   je krivinski radij neskončen in valovna čela so ravnine. Najmanšo vrednost doseže pri  , kjer je:

 

Krivinski radij se za   veča in se za velike   izraža kot:

 

Kompleksna ukrivljenost

uredi

Kompleksno ukrivljenost se definira kot:

 

z ostalimi parametri Gaussovega snopa se jo poveže preko recipročne kompleksne ukrivljenosti:

 

Fazni člen

uredi

Fazni člen oz. Gouyevo fazo se izračuna kot:

 

Divergenca snopa

uredi

V limiti   se širino snopa opiše s približno zvezo:

 

Divergenca snopa je izražena s kotom:

 

Divergenca snopa je sorazmerna z valovno dolžino ter obratno sorazmerna s širino grla. Dobro kolimirani žarki se dobijo torej tako, da se uporabi snop s širokim grlom in majhno valovno dolžino.

Snopi višjega reda

uredi

Osnovni Gaussov snop predstavlja rešitev obosnega (paraksialnega) približka Helmholzove enačbe, vendar ni edina rešitev te enačbe. Rešijo jo med drugimi tudi snopi višjih redov:

V idealnem primeru (stabilen resonator, homogeno pomnoževalno sredstvo, popolnoma ravna ali pa parabolična zrcala,...) laser ustvarja osnovni Gaussov snop (imenuje se tudi   način delovanja). V realnem laserju različni vplivi (na primer spreminjanje optične homogenosti pomnoževalnega sredstva zaradi segrevanja) pripomorejo k popačitvi osnovne Gaussove oblike, kar se opiše z bolj zapletenimi funkcijami (Hermitovo, Laguerrovo, ...).