Dvojno Mersennovo število

Dvojno Mersennovo število je v matematiki Mersennovo število oblike:

kjer je p eksponent Mersennovih praštevil.

Najmanjša dvojna Mersennova števila so (OEIS A077586):[1]

.

Dvojna Mersennova praštevilaUredi

Dvojno Mersennovo število, ki je tudi praštevilo, se imenuje dvojno Mersennovo praštevilo. Ker je Mersennovo število   lahko praštevilo le, če je tudi p praštevilo, je dvojno Mersennovo število   praštevilo le, če je tudi   samo Mersennovo praštevilo. Prve vrednosti p, za katere je   praštevilo, so (OEIS A000043):

2, 3, 5, 7, 13, 17, 19, 31, 61, 89.

Od teh so   praštevila za p = 2, 3, 5, 7. Dvojna Mersennova števila za p = 13, 17, 19 in 31 so sestavljena in so znani njihovi eksplicitni prafaktorji. Tako je najmanjši kandidat za naslednje dvojno Mersennovo praštevilo  , ali  . Število je približno enako 1,695 · 10694127911065419641 in je preveliko za preveritev praštevilskosti s katerimkoli trenutno znanim testom praštevilskosti. Nima prafaktorjev manjših od 4 · 1033.[2]

Poseben primer dvojnih Mersennovih števil so Cantorjeva števila oblike:

 

Druga definicijaUredi

V zgornji definiciji je lahko p nenegativno celo število n:

 

kar da celoštevilsko zaporedje (OEIS A077585):

0, 1, 7, 127, 32767, 2147483647, 9223372036854775807, ...

Opombe in skliciUredi

  1. Caldwell, Chris K. "Mersenne Primes: History, Theorems and Lists". Prime Pages (angleščina). Pridobljeno dne 2011-01-18.
  2. Forbes (2008). Zapis navaja največjo vrednost 204204000000 · (10019+1)· (261 − 1) nad 4 · 1033.

ViriUredi

Zunanje povezaveUredi