Meromorfna funkcija: razlika med redakcijama

odstranjenih 6 zlogov ,  pred 12 leti
m
robot Spreminjanje: de:Meromorphe Funktion; kozmetične spremembe
m (robot Dodajanje: fi:Meromorfinen funktio)
m (robot Spreminjanje: de:Meromorphe Funktion; kozmetične spremembe)
'''Meromórfna fúnkcija''' je v [[matematika|matematiki]] [[matematična funkcija|funkcija]], ki je [[holomorfna funkcija|holomorfna]] skoraj povsod na [[kompleksna ravnina|kompleksni ravnini]], razen na [[množica|množici]] izoliranih [[pol (kompleksna analiza)|polov]], ki so določene pohlevne [[matematična singularnost|singularnosti]]. Vsako meromorfno funkcijo je moč izraziti kot razmerje med dvema [[cela funkcija|celima funkcijama]] (pri čemer [[imenovalec]] ni konstantno 0): poli se potem pojavijo pri [[ničla funkcije|ničlaničlah]]h imenovalca.
 
[[Slika:Gamma abs.png|thumb|right|200px|[[Funkcija gama|Funkcija Γ]] je meromorfna povsod na kompleksni ravnini]]
 
Zgledi meromorfnih funkcij so vse [[racionalna funkcija|racionalne funkcije]] kot je ''f''(''z'') = (''z''<sup>3</sup>-2''z'' + 1)/(''z''<sup>5</sup>+3''z'' &minus; 1), funkcije ''f''(''z'') = exp(''z'')/''z'' in ''f''(''z'') = sin(''z'')/(''z'' &minus; 1)<sup>2</sup> kot tudi [[funkcija gama|funkcija Γ]] in [[Riemannova funkcija zeta|Riemannova funkcija ζ]]. Funkciji ''f''(''z'') = ln(''z'') in ''f''(''z'') = exp(1/''z'') nista meromorfni.
 
V jeziku [[Riemannova ploskev|Riemannovih ploskev]] meromorfna funkcija pomeni isto kot holomorfna funkcija, ki slika iz kompleksne ravnine na [[Riemannova sfera|Riemannovo sfero]], ki ni konstantno [[neskončnost|&infin;]]. Poli ustrezajo tistim [[kompleksno število|kompleksnih številom]], ki se [[preslikava|preslikajo]] v &infin;.
 
[[Kategorija:Lastnosti funkcij]]
[[ca:Funció meromorfa]]
[[cs:Meromorfní funkce]]
[[de:MeromorphMeromorphe Funktion]]
[[en:Meromorphic function]]
[[es:Función meromorfa]]
93.880

urejanj