Odpre glavni meni
Prostor, obarvan z rdečo je povezan, zeleni prostor pa je nepovezan

Povezanost je topološka lastnost. Topološki prostor je povezan, kadar v njem ne obstajata neprazni odprti podmnožici, katerih unija je ta prostor in katerih presek je prazen. Če je prostor nepovezan, potem njegove največje povezane podmnožice imenujemo komponente za povezanost. Zadosten pogoj za povezanost prostora je povezanost s potmi.

Ekvivalentne so naslednje trditve:

  1. Prostor je povezan.
  2. Prostora se ne da razdeliti na dve disjunktni neprazni zaprti množici.
  3. in sta edini podmnožici v , ki sta hkrati odprti in zaprti.
  4. in sta edini podmnožici v , ki imata prazno mejo.

Povezanost s potmiUredi

Prostor   je povezan s potmi, če med vsakima točkama   in   iz prostora obstaja pot.

Popolna nepovezanostUredi

Prostor   je popolnoma nepovezan, če je nepovezan in je v vsaki njegovi komponenti za povezanost natanko en element.