Možgani: Razlika med redakcijama

Izbrisana vsebina Dodana vsebina
vezaje v vezaje, pomišljaje in deljaje
Redakcija 3976614 uporabnika Irena Plahuta (pogovor) razveljavljena
Vrstica 1:
: ''Članek govori o možganih vseh živalskih vrst ter o človeških. Za posebnosti človeških možganov glej članek [[Človeški možgani]].''
 
[[Slika:Chimp Brain in a jar.jpg|thumb|Možgani [[šimpanz]]a]]
 
'''Možgáni''' so središče [[živčevje|živčevja]] vseh [[vretenčarji|vretenčarjev]] in večine [[nevretenčarji|nevretenčarjev]]. Le nekatere vrste nevretenčarjev, kot so [[spužve]], [[ožigalkarji]], odrasli [[plaščarji]] in [[iglokožci]], nimajo možganov, čeprav imajo difuzno [[živčno tkivo]]. Možgani ležijo v glavi, navadno blizu osnovnih [[čutilni organ|čutilnih organov]], kot so vidni, slušni, ravnotežni, okušalni in vohalni organi. So najkompleksnejši vretenčarski organ. [[Možganska skorja]], ki je največji del možganov, pri povprečnem človeku šteje od 15 do 33 milijard [[nevron]]ov.<ref>{{Cite journal |last=Pelvig |first=DP |last2=Pakkenberg |first2=H |last3=Stark |first3=AK |last4=Pakkenberg |first4=B |title=Neocortical glial cell numbers in human brains |journal=Neurobiology of Aging |year=2008 |volume=29 |pages=1754–1762 |pmid=17544173 |doi=10.1016/j.neurobiolaging.2007.04.013 |issue=11}}</ref> Vsak se s [[sinapsa]]mi povezuje z več tisoč drugimi nevroni. Ti nevroni komunicirajo med seboj prek [[nevrit]]ov, ki prenašajo [[akcijski potencial]] do oddaljenega predela možganov ali do [[biološka tarča|tarčne celice]].
 
Vrstica 10 ⟶ 8:
 
== Anatomija ==
[[Slika:Section through olfactory bulb 16 days old rat brain.jpg|thumb|Prerez [[olfaktorni bulbus|olfaktornega bulbusa]] podgane. Obarvan je na dva načina hkrati - eno barvanje kaže telesa nevronov, drugo kaže receptorje za [[nevtrotransmitor]] [[GABA]].]]
 
Oblika in velikost možganov različnih [[vrsta (biologija)|vrst]] se zelo razlikujeta. Navadno je težko identificirati skupne značilnosti.<ref name=Shepherd>{{cite book |title=Neurobiology | last=Shepherd |first=GM |publisher=Oxford University Press |year=1994 |isbn=978-0-19-508843-4 |page=3}}</ref> Kljub temu obstaja več načel možganske arhitekture, ki so skupne širokemu naboru vrst.<ref name="Sporns2010">{{cite book|last=Sporns |first= O|title=Networks of the Brain|url=http://books.google.com/books?id=v1DBKE7-UrYC&pg=PA143|year=2010|publisher=MIT Press|isbn=978-0-262-01469-4|page=143}}</ref> Nekatere značilnosti možganske strukture so skupne skoraj vsem živalskim vrstam.<ref name="Başar2010">{{cite book|last=Başar |first= E|title=Brain-Body-Mind in the Nebulous Cartesian System: A Holistic Approach by Oscillations|url=http://books.google.com/books?id=NAbMHo-ux58C&pg=PA225|year=2010|publisher=Springer|isbn=978-1-4419-6134-1|page=225}}</ref> Preostale napravijo razliko med »višjimi« in primitivnimi možgani - med vretenčarji in nevretenčarji.<ref name=Shepherd/>
[[Slika:Section through olfactory bulb 16 days old rat brain.jpg|thumb|Prerez [[olfaktorni bulbus|olfaktornega bulbusa]] podgane. Obarvan je na dva načina hkrati – eno barvanje kaže telesa nevronov, drugo kaže receptorje za [[nevtrotransmitor]] [[GABA]].]]
 
Oblika in velikost možganov različnih [[vrsta (biologija)|vrst]] se zelo razlikujeta. Navadno je težko identificirati skupne značilnosti.<ref name=Shepherd>{{cite book |title=Neurobiology | last=Shepherd |first=GM |publisher=Oxford University Press |year=1994 |isbn=978-0-19-508843-4 |page=3}}</ref> Kljub temu obstaja več načel možganske arhitekture, ki so skupne širokemu naboru vrst.<ref name="Sporns2010">{{cite book|last=Sporns |first= O|title=Networks of the Brain|url=http://books.google.com/books?id=v1DBKE7-UrYC&pg=PA143|year=2010|publisher=MIT Press|isbn=978-0-262-01469-4|page=143}}</ref> Nekatere značilnosti možganske strukture so skupne skoraj vsem živalskim vrstam.<ref name="Başar2010">{{cite book|last=Başar |first= E|title=Brain-Body-Mind in the Nebulous Cartesian System: A Holistic Approach by Oscillations|url=http://books.google.com/books?id=NAbMHo-ux58C&pg=PA225|year=2010|publisher=Springer|isbn=978-1-4419-6134-1|page=225}}</ref> Preostale napravijo razliko med »višjimi« in primitivnimi možgani – med vretenčarji in nevretenčarji.<ref name=Shepherd/>
 
Opazovanje je najlažji način pridobivanja informacij o anatomiji možganov, obstajajo pa tudi bolj sofisticirane tehnike. Možgansko tkivo je v svojem naravnem stanju premehko za obravnavo, zato ga utrdijo v [[alkohol]]u ali drugih [[fiksacija|fiksacijskih]] sredstvih. Nato ga narežejo za makroskopski pregled notranjosti. Notranjost možganov sestavljata [[siva možganovina]], ki je temne barve, in [[bela možganovina]], ki je svetlejša. Več informacij daje barvanje tkivnih rezin z različnimi [[barvilo|barvili]]. Ta prikažejo regije, kjer so specifični tipi [[molekula|molekul]] prisotni v visokih [[koncentracija]]h. Možno je tudi pregledati mikrostrukturo možganskega tkiva z [[mikroskop]]om in slediti vzorcem povezanosti možganskih regij.<ref name="Singh2006">{{cite book|last=Singh |first=I|title=Textbook of human neuroanatomy|url=http://books.google.com/books?id=bBMS013dmycC&pg=PA24|year=2006|publisher=Jaypee Brothers Publishers|isbn=978-81-8061-808-6|page=24|chapter=A brief review of the techniques used in the study of neuroanatomy}}</ref>
 
=== Celična struktura ===
[[Slika:Chemical synapse schema cropped.jpg|thumb|250px|Nevroni tvorijo električne signale, ki potujejo vzdolž nevritov. Ko električni signal doseže stik - sinapso, povzroči sprostitev nevrotransmitorja. Ta se veže na receptorje na drugih celicah in spremeni njihovo električno aktivnost.]]
 
Možgane vseh živali sestavljata dva glavna tipa celic - [[nevron]]i in [[nevroglija|glialne celice]]. Slednje imenujejo tudi ''glija'' ali ''nevroglija'' in so različnih vrst. Nudijo strukturno in presnovno podporo, so izolatorji in usmerjajo razvoj. Nevroni veljajo za najpomembnejše celice možganov.<ref>[[#refPrinciples|''Principles of Neural Science'']] str. 20</ref>
[[Slika:Chemical synapse schema cropped.jpg|thumb|250px|Nevroni tvorijo električne signale, ki potujejo vzdolž nevritov. Ko električni signal doseže stik – sinapso, povzroči sprostitev nevrotransmitorja. Ta se veže na receptorje na drugih celicah in spremeni njihovo električno aktivnost.]]
 
Edinstvena za nevrone je njihova sposobnost pošiljanja signalov specifičnim tarčnim celicam na dolge razdalje.<ref>[[#refPrinciples|''Principles of Neural Science'']], str. 21</ref> Signale pošiljajo po nevritih do drugih območij, včasih bližjih, včasih do oddaljenih delov možganov ali telesa. Dolžina nevrita je lahko nenavadna - če bi [[piramidna celica|piramidno celico]] možganske skorje povečali na velikost človeškega telesa, bi njen nevrit, enako povečan, postal kabel, ki bi meril v premeru nekaj centimetrov in bil daljši od kilometra.<ref>{{cite journal |title=Neuronal circuits of the neocortex |year=2004 |volume=27 |pages=419–451 |pmid=15217339 |last=Douglas |first=RJ |last2=Martin |first2=KA |doi=10.1146/annurev.neuro.27.070203.144152 |journal=Annual Review of Neuroscience}}</ref> Nevriti prenašajo signale v obliki elektrokemičnih pulzov - [[akcijski potencial|akcijskih potencialov]]. Ti trajajo manj kot tisočinko sekunde in potujejo vzdolž nevrita s hitrostjo 1–100 [[Meter na sekundo|m/s]]. Nekateri nevroni oddajajo akcijske potenciale stalno, od 10 do 100-krat na sekundo, navadno v nepravilnih vzorcih. Drugi nevroni so večino časa nemi, le vsake toliko časa oddajajo »izbruhe« akcijskih potencialov.<ref>{{cite journal| title = The action potential| journal = Practical Neurology| volume = 7| pages = 192–197| year = 2007| pmid = 17515599| last = Barnett |first=MW |last2=Larkman |first2=PM| issue = 3}}</ref>
Možgane vseh živali sestavljata dva glavna tipa celic – [[nevron]]i in [[nevroglija|glialne celice]]. Slednje imenujejo tudi ''glija'' ali ''nevroglija'' in so različnih vrst. Nudijo strukturno in presnovno podporo, so izolatorji in usmerjajo razvoj. Nevroni veljajo za najpomembnejše celice možganov.<ref>[[#refPrinciples|''Principles of Neural Science'']] str. 20</ref>
 
Edinstvena za nevrone je njihova sposobnost pošiljanja signalov specifičnim tarčnim celicam na dolge razdalje.<ref>[[#refPrinciples|''Principles of Neural Science'']], str. 21</ref> Signale pošiljajo po nevritih do drugih območij, včasih bližjih, včasih do oddaljenih delov možganov ali telesa. Dolžina nevrita je lahko nenavadna – če bi [[piramidna celica|piramidno celico]] možganske skorje povečali na velikost človeškega telesa, bi njen nevrit, enako povečan, postal kabel, ki bi meril v premeru nekaj centimetrov in bil daljši od kilometra.<ref>{{cite journal |title=Neuronal circuits of the neocortex |year=2004 |volume=27 |pages=419–451 |pmid=15217339 |last=Douglas |first=RJ |last2=Martin |first2=KA |doi=10.1146/annurev.neuro.27.070203.144152 |journal=Annual Review of Neuroscience}}</ref> Nevriti prenašajo signale v obliki elektrokemičnih pulzov – [[akcijski potencial|akcijskih potencialov]]. Ti trajajo manj kot tisočinko sekunde in potujejo vzdolž nevrita s hitrostjo 1–100 [[Meter na sekundo|m/s]]. Nekateri nevroni oddajajo akcijske potenciale stalno, od 10 do 100-krat na sekundo, navadno v nepravilnih vzorcih. Drugi nevroni so večino časa nemi, le vsake toliko časa oddajajo »izbruhe« akcijskih potencialov.<ref>{{cite journal| title = The action potential| journal = Practical Neurology| volume = 7| pages = 192–197| year = 2007| pmid = 17515599| last = Barnett |first=MW |last2=Larkman |first2=PM| issue = 3}}</ref>
 
Nevriti prenašajo signale do drugih nevronov preko specializiranih stikov – sinaps. Posamezen nevrit lahko tvori tudi več tisoč sinaptičnih povezav z drugimi celicami.<ref>[[#refPrinciples|''Principles of Neural Science'']], Ch.10, str. 175</ref> Ko akcijski potencial, ki potuje vzdolž nevrita, dospe do sinapse, povzroči sprostitev nevrotransmitorja. Ta se veže na receptor na [[celična membrana|membrani]] tarčne celice in vpliva na nastanek akcijskih potencialov v njej.<ref name=Principles10>[[#refPrinciples|''Principles of Neural Science'']], Ch. 10</ref>
 
Nevriti prenašajo signale do drugih nevronov preko specializiranih stikov - sinaps. Posamezen nevrit lahko tvori tudi več tisoč sinaptičnih povezav z drugimi celicami.<ref>[[#refPrinciples|''Principles of Neural Science'']], Ch.10, str. 175</ref> Ko akcijski potencial, ki potuje vzdolž nevrita, dospe do sinapse, povzroči sprostitev nevrotransmitorja. Ta se veže na receptor na [[celična membrana|membrani]] tarčne celice in vpliva na nastanek akcijskih potencialov v njej.<ref name=Principles10>[[#refPrinciples|''Principles of Neural Science'']], Ch. 10</ref>
[[Slika:PLoSBiol4.e126.Fig6fNeuron.jpg|thumb|left|alt=Svetlozeleno obarvana celica leži na rdečem in črnem ozadju. Ima dolge, močno razvejane izrastke, ki segajo v več smeri.|Nevroni imajo pogosto razvejano mrežo dendritov, ki prejemajo sinaptične povezave. Na sliki je piramidna celica iz [[hipokampus]]a. Z barvanjem so prikazali beljakovine (obarvane so z zeleno).]]
 
Sinapse so ključni funkcionalni element možganov.<ref name=ShepherdSOB>{{cite book |last=Shepherd |first=GM |title=The Synaptic Organization of the Brain |year=2004 |publisher=Oxford University Press US |isbn=978-0-19-515956-1 |chapter=Ch. 1: Introduction to synaptic circuits}}</ref> Osnovna funkcija možganov je komunikacija med celicami in sinapse so mesto, kjer se to dogaja. Ocenjujejo, da imajo človeški možgani približno 100·10<sup>12</sup> sinaps.<ref>{{cite journal| last = Williams |first=RW |last2=Herrup |first2=K| title = The control of neuron number| journal = Annual Review of Neuroscience| volume = 11| pages = 423–453| year = 1988| pmid = 3284447| doi = 10.1146/annurev.ne.11.030188.002231}}</ref> Možgani [[vinska mušica|vinske mušice]] imajo več milijonov sinaps.<ref>{{cite journal |last=Heisenberg |first=M |title=Mushroom body memoir: from maps to models |journal=Nature Reviews Neuroscience |volume=4 |pages=266–275 |year=2003 |pmid=12671643 |doi=10.1038/nrn1074 |issue=4}}</ref> Funkcije sinaps so zelo raznolike - nekatere so ekscitatorne (vzburjajo tarčno celico), druge so inhibitorne (zavirajo tarčno celico). Nekatere delujejo preko aktivacije [[sistem drugotnih prenašalcev|sistema drugotnega prenašalca]], ki spremeni notranjo kemijo tarčne celice na zelo zapletene načine.<ref name=ShepherdSOB/> Velik delež sinaps je dinamično prilagodljiv. [[Sinaptična plastičnost|Od aktivnosti odvisna prilagodljivost sinaps]] velja za primarni mehanizem možganov, ki omogoča [[učenje]] in [[spomin]].<ref name=ShepherdSOB/>
 
Večino možganskega prostora zavzemajo nevriti, ki se pogosto povezujejo v [[živčna proga|živčne proge]]. Mnogo nevritov obdaja maščobna snov [[mielin]], ki povečuje hitrost potovanja signala. Mielin je bel, zato so deli možganov, ki jih izpolnjujejo le živčna vlakna, svetlejši. Imenujemo jih ''bela možganovina''. ''Sivo možganovino'' oblikujejo območja z večjo gostoto teles nevronov.<ref>[[#refPrinciples|''Principles of Neural Science'']], Ch. 2</ref>
 
=== Evolucija ===
 
==== Splošna zgradba živčevja dvobočno somernih živali ====
 
[[Image:Bilaterian-plan.svg|thumb|right|300px|Živčevje [[dvobočno somerna žival|dvobočno somerne živali]] je v obliki hrbtne strune s segmentnimi povečanji in ''možgani'' spredaj.]]
Razen nekaj primitivnih tipov živali, kot so spužve (nimajo živčevja)<ref name=Jacobs>{{Cite journal|title=Evolution of sensory structures in basal metazoa |journal=Integrative & Comparative Biology |volume=47|issue=5 |year=2007 |pages=712–723 |doi=10.1093/icb/icm094 |url=http://icb.oxfordjournals.org/cgi/content/full/47/5/712 |last1=Jacobs |first1=DK|pmid=21669752|author-separator=,|author2=Nakanishi N|author3=Yuan D|display-authors=3|last4=Camara|first4=A.|last5=Nichols|first5=S. A.|last6=Hartenstein|first6=V.}}</ref> in ožigalkarji (njihovo živčevje sestavlja difuzna živčna mreža),<ref name=Jacobs/> so vse danes živeče živali [[dvobočno somerna žival|dvobočno somerne]]. To pomeni, da je oblika njihovega telesa simetrična (leva in desna polovica sta si približna zrcalni sliki).<ref name=Urbilateria /> Vse dvobočno somerne živali so se razvile iz skupnega prednika, ki je verjetno živel v zgodnjem [[kambrij]]u, pred 550 do 600 milijoni let. Hipoteza trdi, da je imel skupni prednik obliko preprostega [[črv]]a s členjenim telesom.<ref name=Urbilateria>{{cite journal |last=Balavoine |first= G |title=The segmented Urbilateria: A testable scenario |journal= Integrative & Comparative Biology |year=2003 |volume=43 |pages=137–147 | url = http://icb.oxfordjournals.org/cgi/content/full/43/1/137 | doi = 10.1093/icb/43.1.137 |issue=1}}</ref> Na shematski ravni se osnovna črvasta oblika odraža v zgradbi telesa in živčevja vseh dvobočno somernih živali, vključno z vretenčarji.<ref>{{cite book| title = The Evolution of Organ Systems| last=Schmidt-Rhaesa |first=A| publisher=Oxford University Press| year=2007| isbn=978-0-19-856669-4 |page=110}}</ref> Temeljna dvobočno somerna oblika telesa je cev s črevesno votlino, ki poteka od ust do [[anus]]a in s [[hrbtna struna|hrbtno struno]] z razširitvijo ([[ganglij]]em) za vsak telesni člen. Posebno velik ganglij je na začetku - imenujemo ga možgani. Možgani so pri določenih skupinah, kot so [[gliste]], majhni in preprosti. Pri drugih skupinah živali, vključno z vretenčarji, so najkompleksnejši organ.<ref name=Shepherd/> Nekatere črvaste živali, kot so [[pijavke]], imajo povečan ganglij na koncu hrbtne strune, čemur pravimo ''repni možgani''.<ref>{{cite journal |title=Neuronal control of leech behavior |journal=Prog Neurobiology |year=2005 |volume=76 |pages=279–327 |pmid=16260077 |last=Kristan Jr |first=WB| last2= Calabrese |first2=RL |last3=Friesen |first3=WO |doi=10.1016/j.pneurobio.2005.09.004 |issue=5}}</ref>
 
Razen nekaj primitivnih tipov živali, kot so spužve (nimajo živčevja)<ref name=Jacobs>{{Cite journal|title=Evolution of sensory structures in basal metazoa |journal=Integrative & Comparative Biology |volume=47|issue=5 |year=2007 |pages=712–723 |doi=10.1093/icb/icm094 |url=http://icb.oxfordjournals.org/cgi/content/full/47/5/712 |last1=Jacobs |first1=DK|pmid=21669752|author-separator=,|author2=Nakanishi N|author3=Yuan D|display-authors=3|last4=Camara|first4=A.|last5=Nichols|first5=S. A.|last6=Hartenstein|first6=V.}}</ref> in ožigalkarji (njihovo živčevje sestavlja difuzna živčna mreža),<ref name=Jacobs/> so vse danes živeče živali [[dvobočno somerna žival|dvobočno somerne]]. To pomeni, da je oblika njihovega telesa simetrična (leva in desna polovica sta si približna zrcalni sliki).<ref name=Urbilateria /> Vse dvobočno somerne živali so se razvile iz skupnega prednika, ki je verjetno živel v zgodnjem [[kambrij]]u, pred 550 do 600 milijoni let. Hipoteza trdi, da je imel skupni prednik obliko preprostega [[črv]]a s členjenim telesom.<ref name=Urbilateria>{{cite journal |last=Balavoine |first= G |title=The segmented Urbilateria: A testable scenario |journal= Integrative & Comparative Biology |year=2003 |volume=43 |pages=137–147 | url = http://icb.oxfordjournals.org/cgi/content/full/43/1/137 | doi = 10.1093/icb/43.1.137 |issue=1}}</ref> Na shematski ravni se osnovna črvasta oblika odraža v zgradbi telesa in živčevja vseh dvobočno somernih živali, vključno z vretenčarji.<ref>{{cite book| title = The Evolution of Organ Systems| last=Schmidt-Rhaesa |first=A| publisher=Oxford University Press| year=2007| isbn=978-0-19-856669-4 |page=110}}</ref> Temeljna dvobočno somerna oblika telesa je cev s črevesno votlino, ki poteka od ust do [[anus]]a in s [[hrbtna struna|hrbtno struno]] z razširitvijo ([[ganglij]]em) za vsak telesni člen. Posebno velik ganglij je na začetku – imenujemo ga možgani. Možgani so pri določenih skupinah, kot so [[gliste]], majhni in preprosti. Pri drugih skupinah živali, vključno z vretenčarji, so najkompleksnejši organ.<ref name=Shepherd/> Nekatere črvaste živali, kot so [[pijavke]], imajo povečan ganglij na koncu hrbtne strune, čemur pravimo ''repni možgani''.<ref>{{cite journal |title=Neuronal control of leech behavior |journal=Prog Neurobiology |year=2005 |volume=76 |pages=279–327 |pmid=16260077 |last=Kristan Jr |first=WB| last2= Calabrese |first2=RL |last3=Friesen |first3=WO |doi=10.1016/j.pneurobio.2005.09.004 |issue=5}}</ref>
 
Nekateri tipi dvobočno somernih živali nimajo prepoznavnih možganov. To so iglokožci, plaščarji in skupina primitivnih [[ploski črvi|ploskih črvov]] [[Acoelomorpha]]. Ni dokončno pojasnjeno, ali obstoj teh skupin brez možganov kaže, da so bili zgodnejši nevretenčarji brez možganov, ali pa so se njihovi predniki razvili na način, ki je vodil v izgubo predhodno obstoječe možganske strukture.<ref name=Mwinyi>{{cite journal| journal=BMC Evolutionary Biology| year=2010| volume=10| pages=309| title=The phylogenetic position of Acoela as revealed by the complete mitochondrial genome of Symsagittifera roscoffensis| pmc=2973942| pmid=20942955| doi=10.1186/1471-2148-10-309| last=Mwinyi |first=A |last2=Bailly |first2=X |last3=Bourlat |first3=SJ |last4=Jondelius |first4=U |last5=Littlewood |first5=DT |last6=Podsiadlowski |first6=L}}</ref>
 
==== Nevretenčarji ====
 
[[Slika:Drosophila melanogaster - side (aka).jpg|thumb|Vinsko mušico vrste ''[[Drosophila melanogaster]]'' preučujejo da bi pridobili vpogled v vlogo genov pri razvoju možganov.]]
 
Sem spadajo [[členonožci]], [[mehkužci]] in številne živali črvaste oblike. Raznolikost teles nevretenčarjev se ujema z raznolikostjo možganske strukture.<ref>{{cite book |last=Barnes |first=RD |title=Invertebrate Zoology |year=1987 |edition=5th |page=1 |publisher=Saunders College Pub. |isbn=978-0-03-008914-5}}</ref>
 
Vrstica 54 ⟶ 43:
 
* [[Vinske mušice]]: na voljo so številne tehnike za preučevanje njihovih [[genetika|genetskih značilnosti]], zaradi česar so izjemno priročen subjekt za proučevanje vloge genov pri razvoju možganov.<ref>{{cite web
| title=Flybrain: An online atlas and database of the ''drosophila'' nervous system| url = http://flybrain.neurobio.arizona.edu |accessdate=2011-10-14}}</ref> Kljub veliki [[evolucija|evolucijski]] razdalji med žuželkami in [[sesalci]] so se številni vidiki nevrogenetskih lastnosti vinskih mušic pokazali kot relevantni za ljudi. Prve gene, ki uravnavajo biološke ure, so prepoznali s pregledovanjem [[mutacija|mutantov]] vinske mušice, ki so izkazovali motene [[cirkadiani ritem|cirkadiane ritme]].<ref>{{cite journal| year = 1971| title = Clock Mutants of Drosophila melanogaster| journal = Proc Nat Acad Sci U.S.A.| volume = 68| pages = 2112–6| pmid = 5002428| doi = 10.1073/pnas.68.9.2112| pmc = 389363| last = Konopka |first=RJ |last2=Benzer |first2=S| issue = 9}}</ref> Iskanje po [[genom]]ih vretenčarjev je pokazalo skupek [[analogija|analognih]] genov, ki igrajo podobno vlogo v biološki uri [[miš]]i - zato so zelo verjetno povezani tudi z biološko uro človeka.<ref>{{cite journal| year = 1985| title = An unusual coding sequence from a Drosophila clock gene is conserved in vertebrates| journal = Nature| volume = 317| pages = 445–8| pmid = 2413365| doi = 10.1038/317445a0| issue = 6036| author = Shin HS ''et a.''}}</ref>
 
| title=Flybrain: An online atlas and database of the ''drosophila'' nervous system| url = http://flybrain.neurobio.arizona.edu |accessdate=2011-10-14}}</ref> Kljub veliki [[evolucija|evolucijski]] razdalji med žuželkami in [[sesalci]] so se številni vidiki nevrogenetskih lastnosti vinskih mušic pokazali kot relevantni za ljudi. Prve gene, ki uravnavajo biološke ure, so prepoznali s pregledovanjem [[mutacija|mutantov]] vinske mušice, ki so izkazovali motene [[cirkadiani ritem|cirkadiane ritme]].<ref>{{cite journal| year = 1971| title = Clock Mutants of Drosophila melanogaster| journal = Proc Nat Acad Sci U.S.A.| volume = 68| pages = 2112–6| pmid = 5002428| doi = 10.1073/pnas.68.9.2112| pmc = 389363| last = Konopka |first=RJ |last2=Benzer |first2=S| issue = 9}}</ref> Iskanje po [[genom]]ih vretenčarjev je pokazalo skupek [[analogija|analognih]] genov, ki igrajo podobno vlogo v biološki uri [[miš]]i – zato so zelo verjetno povezani tudi z biološko uro človeka.<ref>{{cite journal| year = 1985| title = An unusual coding sequence from a Drosophila clock gene is conserved in vertebrates| journal = Nature| volume = 317| pages = 445–8| pmid = 2413365| doi = 10.1038/317445a0| issue = 6036| author = Shin HS ''et a.''}}</ref>
 
* Glisto ''[[Caenorhabditis elegans]]'' so raziskovali zaradi njenega pomena v genetiki.<ref>{{cite web| title=WormBook: The online review of ''C. elegans'' biology| url=http://www.wormbook.org |accessdate=2011-10-14}}</ref> V zgodnjih 70. letih 20. stoletja jo je [[Sydney Brenner]] izbral kot [[modelni organizem]] za raziskovanje genetskega nadzora razvoja. Prednost te živali za raziskave je stereotipnost njene telesne zgradbe. Živčevje tega [[hermafrodit]]a obsega točno 302 nevrona, ki sta vedno na enakem mestu in vedno ustvarjata identične sinaptične povezave.<ref>{{Cite journal| contribution=Specification of the nervous system| last=Hobert |first=O| editor=The ''C. elegans'' Research Community| title=Wormbook| year=2005| doi=10.1895/wormbook.1.12.1| contribution-url=http://www.wormbook.org/chapters/www_specnervsys/specnervsys.html| journal=WormBook| pmid=18050401| pages=1–19}}</ref> Brennerjeva ekipa je razrezala glisto na tisoče ultratankih rezin in vsako pregledala pod [[Vrstični elektronski mikroskop|elektronskim mikroskopom]]. Nato so vizualno preverili ujemanje od odseka do odseka in mapirali vsak nevron in sinapso.<ref>{{cite journal| year=1986| title=The Structure of the Nervous System of the Nematode Caenorhabditis elegans| journal=Phil. Trans. Roy. Soc. London (Biology)| volume=314| pages=1–340| doi=10.1098/rstb.1986.0056| last= White |first=JG |last2=Southgate |first2=E |last3=Thomson |first3=JN |last4=Brenner |first4=S| issue=1165}}</ref> Tako natančno ni raziskan noben drug organizem. Te informacije so omogočile ogromno študij.<ref>{{cite book |chapter=''Caenorhabditis elegans'' |last=Hodgkin |first=J |title=Encyclopedia of Genetics |editors=Brenner S, Miller JH |publisher=Elsevier |year=2001 |pages=251–256 |isbn=978-0-12-227080-2}}</ref>
* Morske zajčke iz rodu ''[[Aplysia]]'' je [[Nobelova nagrada za fiziologijo ali medicino|Nobelov nagrajenec]] [[Eric Kandel]] izbral kot modelni organizem za proučevanje celične osnove učenja in spomina, saj imajo preprosto in dostopno živčevje. Te živali so uporabili v več sto poskusih.<ref>{{cite book| last = Kandel |first=ER| title=In Search of Memory: The Emergence of a New Science of Mind| year=2007| publisher=WW Norton| isbn=978-0-393-32937-7 |pages=145–150}}</ref>
 
==== Vretenčarji ====
 
[[Slika:Shark brain.png|thumb|upright|Možgani [[morski pes|morskega psa]]]]
Prvi vretenčarji so se pojavili pred več kot 500 milijoni let, v [[kambrij]]u, in so po obliki morda spominjali na današnje [[glenavice]].<ref>{{cite journal| year=2003| title= Head and backbone of the Early Cambrian vertebrate ''Haikouichthys''| journal=Nature| volume=421| pages=526–529| doi=10.1038/nature01264| pmid=12556891| last= Shu |first=DG |last2=Morris |first2=SC |last3=Han |first3=J |last4=Zhang |first4=Z-F| issue=6922| last5=Yasui| first5=K.| last6=Janvier| first6=P.| last7=Chen| first7=L.| last8=Zhang| first8=X.-L.| last9=Liu| first9=J.-N.}}</ref> [[Morski pes|Morski psi]] so se pojavili pred približno 450 milijoni let, dvoživke pred 400 milijoni, plazilci pred 350 milijoni in sesalci pred 200 milijoni let. Nobene sodobne vrste ne moremo v strogem pomenu besede opredeliti kot ''primitivnejše'' od drugih, saj imajo vse enako dolgo evolucijsko zgodovino. Vendar možgani sodobnih glenavic, [[piškurji|piškurjev]], morskih psov, dvoživk, plazilcev in sesalcev kažejo gradient velikosti in kompleksnosti, ki v grobem sledi evolucijskemu zaporedju. Vsi ti možgani imajo enak skupek osnovnih anatomskih komponent. Pri glenavicah so mnoge rudimentarne, pri sesalcih pa so najpomembnejši del - predvsem je razširjen in dovršen [[telencefalon]].<ref>{{cite book| last=Striedter |first=GF| year=2005| title=Principles of Brain Evolution| publisher=Sinauer Associates| isbn=978-0-87893-820-9 |chapter=Ch. 3: Conservation in vertebrate brains}}</ref>
 
Možgane najlažje primerjamo po velikosti. Razmerja med velikostjo možganov, velikostjo telesa in drugimi spremenljivkami so primerjali pri številnih vrstah vretenčarjev. Velikost možganov se povečuje z velikostjo telesa, vendar ne [[Linearna funkcija|linearno]]. Če računamo velikost možganov kot funkcijo velikosti telesa, imajo manjše živali večje možgane. Žival z največjim razmerjem med velikostjo možganov in velikostjo telesa je [[kolibriji|kolibri]]. Pri sesalcih razmerje med prostornino možganov in telesno maso sledi [[potenčni zakon|potenčnemu zakonu]] z [[eksponent]]om okrog 0,75.<ref>{{cite journal| last=Armstrong |first=E| title=Relative brain size and metabolism in mammals| journal=Science| year=1983| volume=220| pages=1302–1304| doi=10.1126/science.6407108| pmid=6407108| issue=4603}}</ref> Ta formula opisuje osnoven princip, vendar se vsaka družina sesalcev nekoliko razlikuje, kar deloma odseva kompleksnost njihovega vedenja. Možgani [[prvaki|prvakov]] so tako 5 do 10-krat večji, kot to predvideva formula. Plenilci imajo glede na telesno velikost večje možgane kot njihov plen.<ref>{{cite book| last=Jerison |first=HJ| title=Evolution of the Brain and Intelligence| year=1973| publisher=Academic Press| isbn=978-0-12-385250-2 |pages=55–74}}</ref>
Vrstica 70 ⟶ 56:
Možgani vseh vretenčarjev imajo skupno osnovno obliko, ki je najbolj opazna med zgodnjimi obdobji embrionalnega razvoja. V najzgodnejši obliki se možgani pojavljajo kot tri razširitve na zgornjem koncu [[nevralna cev|nevralne cevi]]. Iz teh razširitev nastanejo [[prozencefalon]], [[mezencefalon]] in [[rombencefalon]]. V zgodnejših razvojnih stopnjah so vsa tri območja približno enako velika. Pri številnih razredih vretenčarjev, kot so ribe in dvoživke, ostanejo ti trije deli enako veliki tudi v odrasli dobi. Pri sesalcih postane prozencefalon mnogo večji kot druga dva dela; mezencefalon se zelo zmanjša.<ref>[[#refPrinciples|''Principles of Neural Science'']], str. 1019</ref>
 
Možgani vretenčarjev so zgrajeni iz mehkega tkiva.<ref name="Principlesof">[[#refPrinciples|''Principles of Neural Science'']], Ch. 17</ref> Živo možgansko tkivo je navzven rožnato in navznoter predvsem belo; možne so tudi druge barve. Možgane vretenčarjev obdaja [[vezivno tkivo]] - [[možganska ovojnica|možganske ovojnice]] ali ''meninge'' ločujejo lobanjo in možgane. Krvne žile vstopajo v možgane skozi odprtine v plasteh ovojnic. Celice v stenah krvnih žil so tesno druga ob drugi in tvorijo [[krvno-možganska pregrada|krvno-možgansko pregrado]]. Ta varuje možgane pred [[toksin]]i, ki jih nosi kri.<ref name=CarpenterCh1>{{cite book| title = Carpenter's Human Neuroanatomy| publisher = Williams & Wilkins| year = 1995| isbn = 978-0-683-06752-1 |chapter=Ch. 1| last=Parent |first=A |last2=Carpenter |first2=MB}}</ref>
 
Nevroanatomi delijo možgane vretenčarjev na šest glavnih regij: [[telencefalon]] (možganski polobli), [[diencefalon]] ([[talamus]] in [[hipotalamus]]), [[mezencefalon]], [[mali možgani|male možgane]], [[most (anatomija)|most]] ter [[podaljšana hrbtenjača|podaljšano hrbtenjačo]]. Vsaka regija ima kompleksno notranjo strukturo. Nekateri deli, kot sta možganska skorja in mali možgani, so sestavljeni iz plasti, ki so zvite in zložene, da ustrezajo prostoru, ki je na voljo. Talamus in hipotalamus sta sestavljena iz skupkov več majhnih jeder. Na podlagi razlik v živčni strukturi, kemiji in povezanosti lahko identificiramo več tisoč različnih regij vretenčarskih možganov.<ref name="Principlesof" />
 
Čeprav so nekateri osnovni sestavni deli prisotni v možganih vseh vretenčarjev, so nekatere evolucijske veje vretenčarjev ubrale svojo pot. Opazne so razlike v možganski geometriji, predvsem v območju prozencefalona. Možgani morskega psa kažejo osnovne komponente v rostralni smeri. Pri [[kostnice|kostnicah]] so možgani ''obrnjeni'' - kot nogavica, ki je obrnjena od znotraj navzven. Pri ptičih je največja razlika v strukturi prozencefalona.<ref>{{cite journal| last=Northcutt |first=RG| year=2008| title=Forebrain evolution in bony fishes| journal=Brain Research Bulletin| volume=75| pages=191–205| pmid=18331871| doi=10.1016/j.brainresbull.2007.10.058| issue=2–4}}</ref> Te razlike otežujejo primerjanje možganov različnih živalskih vrst.<ref>{{cite journal| year=2005| title=Organization and evolution of the avian forebrain| journal=The Anatomical Record Part A| volume=287| pages=1080–1102| pmid=16206213| doi=10.1002/ar.a.20253| last=Reiner |first=A |last2=Yamamoto |first2=K |last3=Karten |first3=HJ| issue=1}}</ref>
 
[[Slika:Vertebrate-brain-regions small.png|thumb|Glavne anatomske regije možganov vretenčarjev. Shema prikazuje možgane morskega psa in človeka. Oba imata enake dele, vendar se razlikujejo po velikosti in obliki.]]
Vrstica 86 ⟶ 72:
* [[Mali možgani]] modulirajo signale iz drugih možganskih sistemov tako, da jih napravijo bolj natančne. Če živalim odstranimo male možgane, bodo še vedno zmožne početi vse, vendar bodo gibi netočni in nerodni. Ta natančnost ni vrojena, vgrajena, ampak se je naučimo s poskusi in napakami. Zgled nevronske [[plastičnost]]i, ki se oblikuje v malih možganih, je vožnja kolesa.<ref name="refprinciples">[[#refPrinciples|''Principles of Neural Science'']], Ch. 42</ref>
* [[Zgornji kolikel]]/optični tektum: omogoča, da so dejanja usmerjena proti določeni točki v prostoru, večinoma v odgovoru na vizualni vnos. Pri sesalcih se imenuje zgornji kolikel (''colliculus superior''). Njegova najbolje preučena funkcija je usmerjanje premikanja očesnih zrkel. Usmerja tudi gibe doseganja in druga v objekte usmerjena dejanja. Ima močne vhode iz čutila za vid, kot tudi iz drugih čutil, ki sodelujejo v usmerjanju dejanj, kot je slušni vnos pri sovah in vnos iz termosenzitivnega jamičastega organa pri kačah. Pri nekaterih ribah, kot so piškurji, je ta predel največji del možganov.<ref>{{cite journal| year=2007| title=Tectal control of locomotion, steering, and eye movements in lamprey| journal=Journal of Neurophysiology| volume=97| pages=3093–3108| pmid=17303814| url=http://jn.physiology.org/cgi/content/full/97/4/3093| doi=10.1152/jn.00639.2006| last=Saitoh |first=K |last2=Ménard |first2=A |last3=Grillner |first3=S| issue=4}}</ref> Zgornji kolikel je del mezencefalona.
* [[Pallium]] je plast sive možganovine, ki leži na površini prozencefalona. Pri plazilcih in sesalcih se imenuje [[možganska skorja]]. Skorja opravlja več funkcij, kot sta [[voh]] in [[prostorski spomin]]. Pri sesalcih, kjer je največji del možganov, nadzoruje funkcije iz več možganskih regij. Pri številnih sesalcih je skorja oblikovana v vijuge - giruse. Ti tvorijo globoke žlebe - sulkuse. Vijuge povečujejo površino skorje in tako povečajo količino sive možganovine in informacij, ki jih možgani lahko procesirajo.<ref>{{cite journal| last = Puelles |first=L| year=2001| title=Thoughts on the development, structure and evolution of the mammalian and avian telencephalic pallium| journal=Phil. Trans. Roy. Soc. London B (Biological Sciences)| volume=356| pages=1583–1598| pmid=11604125| doi=10.1098/rstb.2001.0973| pmc=1088538| issue = 1414}}</ref>
* [[Hipokampus]] v ožjem pomenu obstaja le pri sesalcih. Medialni pallium, iz katerega izhaja hipokampus, ima ustreznice pri vseh vretenčarjih. Ta del možganov se ukvarja s prostorskim spominom in navigacijo pri ribah, ptičih, plazilcih in sesalcih.<ref>{{cite journal| year=2003| title=Evolution of forebrain and spatial cognition in vertebrates: conservation across diversity| journal=Brain, Behavior and Evolution| volume=62| pages = 72–82| doi=10.1159/000072438| pmid=12937346| last=Salas |first=C |last2=Broglio |first2=C |last3=Rodríguez |first3=F| issue=2}}</ref>
* [[Bazalni ganglij]]i so skupina med seboj povezanih struktur v prozencefalonu. Primarna funkcija bazalnih ganglijev je selekcija dejanj. Inhibitorne signale pošiljajo vsem delom možganov, ki lahko generirajo motorično vedenje. V pravih okoliščinah lahko sprostijo inhibicijo. To omogoči sistemom, ki tvorijo dejanja, da jih izvedejo. Najpomembnejši učinek nagrajevanja in kaznovanja je spreminjanje povezav znotraj bazalnih ganglijev.<ref name=Grillner2005>{{cite journal| year=2005| title=Mechanisms for selection of basic motor programs—roles for the striatum and pallidum| journal=Trends in Neurosciences| volume=28| pages=364–370| pmid=15935487| doi=10.1016/j.tins.2005.05.004| last1=Grillner |first1=S| issue=7| author-separator=,| display-authors=1| last2=Hellgren| first2=J| last3=Menard| first3=A| last4=Saitoh| first4=K| last5=Wikstrom| first5=M}}</ref>
Vrstica 92 ⟶ 78:
 
==== Sesalci ====
 
Največja razlika med možgani sesalcev in drugih vretenčarjev je v velikosti. Sesalec ima možgane povprečno približno dvakrat večje od enako velikega ptiča in desetkrat večje od plazilca enake velikosti.<ref name=Northcutt2002>{{cite journal |last=Northcutt |first=RG |title=Understanding vertebrate brain evolution |journal=Integrative & Comparative Biology |volume=42 |pages=743–756 |pmid=21708771 |url=http://icb.oxfordjournals.org/content/42/4/743.full |doi=10.1093/icb/42.4.743 |year=2002 |issue=4}}</ref>
 
Vrstica 100 ⟶ 85:
 
==== Prvaki ====
 
{| class="wikitable" align="right" style="margin-left: 10px;"
|+ Količnik encefalizacije (EQ)
!Vrsta
!EQ<ref name=Roth2005>{{cite journal|title=Evolution of the brain and Intelligence|last=Roth |first=G |last2=Dicke |first2=U|journal=Trends in Cognitive Sciences
| volume=9 |issue=5|pages=250–257|year=2005|doi=10.1016/j.tics.2005.03.005|pmid=15866152}}</ref>
|-
| [[Človek]] || 7,4–7,8
|-
| [[Šimpanzi]] || 2,2–2,5
|-
| [[Rezus]] (opica) || 2,1
|-
| [[Velika pliskavka]] || 4,14<ref name=Marino>{{cite journal| last = Marino| first = Lori| title = Cetacean Brain Evolution: Multiplication Generates Complexity| journal = International Society for Comparative Psychology| issue = 17| pages = 1–16| year = 2004| url = http://www.cogs.indiana.edu/spackled/2005readings/CetaceanBrainEvolution.pdf|format=PDF| accessdate = 2010–08–292010-08-29 }}</ref>
|-
| [[Sloni]] || 1,13–2,36<ref>{{Cite journal | doi = 10.1016/j.brainresbull.2006.03.016 | last = Shoshani | first = J | last2 = Kupsky | first2 = WJ | last3 = Marchant | first3 = GH| title = Elephant brain Part I: Gross morphology, functions, comparative anatomy, and evolution | journal = Brain Research Bulletin | volume = 70 | issue = 2 | pages = 124–157 | year = 2006 | pmid = 16782503}}</ref>
|-
| [[Domači pes]] || 1,2
|-
| [[Domači konj]] || 0,9
|-
| [[Podgana]] || 0,4
<!--|-
| colspan="2" style="text-align: left;" |EQ v razmerju do domače mačke kot standarda: EQ(mačka)=1-->
|-
|}
 
Možgani človeka in drugih prvakov imajo enako strukturo kot možgani drugih sesalcev, vendar so večinoma večji glede na telesno velikost.<ref name=Finlay>{{cite journal| year = 2001| title = Developmental structure in brain evolution| journal = Behavioral and Brain Sciences| volume = 24| pages = 263–308| pmid = 11530543| last = Finlay |first=BL |last2=Darlington |first2=RB |last3=Nicastro |first3=N| issue = 2|doi=10.1017/S0140525X01003958}}</ref> Najbolj sprejet način primerjave možganov med različnimi živalskimi vrstami je [[količnik encefalizacije]], ki upošteva nelinearnost razmerja možgani-telo.<ref name=Roth2005/> Povprečen količnik ljudi je 7–87-8, količnik drugih prvakov je 2–32-3. Količnik delfinov je višji kot pri človeku podobnih opicah in drugih prvakih (z izjemo človeka),<ref name=Marino/> skoraj vsi drugi sesalci pa imajo precej nizek EQ.
 
Večina povečanja možganov prvakov je na račun obsežne razširitve možganske skorje, posebno [[prefrontalna skorja|prefrontalne skorje]] in delov skorje, ki sodelujejo pri vidnem zaznavanju.<ref>{{cite book| last = Calvin| first = WH| title = How Brains Think| publisher = Basic Books| year = 1996| isbn = 978-0-465-07278-1| url = http://books.google.com/?id=z1r03ECL5A8C}}</ref> Mreža prvakov za vizualno procesiranje obsega najmanj 30 različnih možganskih regij s kompleksnim omrežjem povezav. Ocenjujejo, da območja vizualnega procesiranja obsegajo več kot polovico celotne površine neokorteksa prvakov.<ref name = Sereno1995>{{cite journal | doi = 10.1126/science.7754376 | last1 = Sereno |first1 = MI | last2 = Dale | first2 = AM | last3 = Reppas | first3 = AM | last4 = Kwong | first4 = KK | last5 = Belliveau | first5 = JW | last6 = Brady | first6 = TJ | last7 = Rosen | first7 = BR | last8 = Tootell |first8 = RBH | year = 1995 | title = Borders of multiple visual areas in human revealed by functional magnetic resonance imaging | journal = Science | publisher = AAAS | volume = 268 | issue = 5212 | pages = 889–893 | url = http://www.cogsci.ucsd.edu/~sereno/papers/HumanRetin95.pdf | pmid = 7754376}}</ref> Prefrontalna skorja opravlja funkcije, ki vključujejo načrtovanje, [[delovni spomin]], [[motivacija|motivacijo]], [[pozornost]] in izvršilni nadzor. Pri prvakih zavzema veliko večji delež možganov kot pri drugih vrstah. Posebno velika je pri človeku.<ref>{{cite book |last=Fuster |first=JM |title=The Prefrontal Cortex |year=2008 |publisher=Elsevier |isbn=978-0-12-373644-4 |pages=1–7}}</ref>
 
== Fiziologija ==
 
Funkcije možganov temeljijo na sposobnosti nevronov prenašati elektrokemične signale do drugih celic in njihovi sposobnosti, da primerno odgovorijo na elektrokemični signal, ki ga prejmejo od drugih celic. [[Membranski potencial|Membranske potenciale]] nevronov nadzorujejo mnogi biokemični in presnovni procesi, od katerih so najpomembnejše interakcije med [[živčni prenašalec|živčnimi prenašalci]] in receptorji, ki potekajo v sinapsah.<ref name=Principles10/>
 
=== Živčni prenašalci in receptorji ===
 
Živčni prenašalci so snovi, ki se sproščajo v sinapsah, ko jih aktivira akcijski potencial. Vežejo se na receptor na sinaptični membrani tarčne celice, s tem pa spremenijo električne in kemične lastnosti receptorja.
 
Vrstica 146 ⟶ 128:
 
=== Električna aktivnost ===
 
[[Slika:Spike-waves.png|thumb|right|Možganska električna aktivnost, posneta pri človeku z [[epilepsija|epileptičnim napadom]].]]
 
Stranski učinek elektrokemičnih procesov, ki jih nevroni uporabljajo za signaliziranje, je [[električno polje]]. Tvori ga aktivno možgansko tkivo. Ko veliko število nevronov kaže sinhronizirano aktivnost, je mogoče električno polje, ki ga tvorijo, zaznati tudi zunaj lobanje. Za to se uporabljata [[elektroencefalografija]] (EEG)<ref name = "Niedermeyer">{{cite book| last=Speckmann |first=E-J |last2=Elger |first2=CE |chapter=Introduction to the neurophysiological basis of the EEG and DC potentials |editors = Niedermeyer E, Lopes da Silva FH | title = Electroencephalography: Basic Principles, Clinical Applications, and Related Fields | publisher = Lippincott Williams & Wilkins | year = 2004| isbn = 0-7817-5126-8 |pages=17–31}}</ref> ali [[magnetoencefalografija]] (MEG). Posnetki EEG-ja, skupaj s posnetki preko elektrod, vstavljenih v možgane poskusnih živali, kot so podgane, kažejo, da so možgani živih živali neprestano aktivni, tudi med spanjem.<ref name=Buzsaki>{{cite book| last=Buzsáki |first=G| title=Rhythms of the Brain| year = 2006| publisher=Oxford University Press| isbn=978-0-19-530106-9| oclc=63279497}}</ref> Vsak del možganov kaže mešanico ritmične in neritmične aktivnosti, ki se razlikuje glede na vedenje. Pri sesalcih kaže možganska skorja velike in počasne valove delta med spanjem, hitrejše valove alfa, ko je žival budna, a nepozorna in na videz kaotično aktivnost, ko opravlja določeno nalogo. Med epileptičnim napadom možganski nadzor inhibicije odpove. Električna aktivnost naraste na patološko raven in kaže na EEG-ju vzorce, ki jih v zdravih možganih ni. Statistična analiza, katere cilj je povezovanje vzorcev z aktivnostjo posameznih nevronov, je eno glavnih področij raziskav v sodobni [[nevrofiziologija|nevrofiziologiji]].<ref name=Buzsaki/>
 
=== Presnova ===
 
Vsi vretenčarji imajo [[krvno-možganska pregrada|krvno-možgansko pregrado]], ki omogoča, da presnova v možganih poteka drugače kot v drugih delih telesa. Najpomembnejše so celice nevroglije, saj nadzorujejo kemijsko sestavo tekočine, ki obdaja nevrone, vključno z ravnjo [[ion]]ov in hranil.<ref name=Nieuwenhuys/>
 
Vrstica 159 ⟶ 138:
 
== Funkcije ==
 
Iz evolucijsko-biološke perspektive je funkcija možganov izvajati koherenten nadzor nad dejanji živali. Centralizirani možgani omogočajo hkratno aktivacijo skupin mišic v kompleksnih vzorcih. Centraliziran nadzor omogoča, da dogajanje v enem delu telesa izzove odziv v drugih delih in tudi prepreči navzkrižno delovanje različnih telesnih delov.<ref name=CarewCh1>{{cite book| last = Carew| first = TJ| title = Behavioral Neurobiology: the Cellular Organization of Natural Behavior| publisher = Sinauer Associates| year = 2000| isbn = 978-0-87893-092-0| url = http://books.google.com/?id=wEMTGwAACAAJ| chapter = Ch. 1}}</ref>
 
Vrstica 165 ⟶ 143:
 
=== Procesiranje informacij ===
Iznajdba elektronskih računalnikov v 40. letih 20. stoletja in razvoj matematične [[informacijska teorija|informacijske teorije]] sta privedla so odkritja, da se lahko možgane razume kot sisteme, ki procesirajo informacije. Ta koncept je osnova [[kibernetika|kibernetike]]. Omogočil je tudi pojav [[računalniška nevroznanost|računalniške nevroznanosti]].<ref name=CKS1993>{{cite book |chapter=What is computational neuroscience? |last=Churchland |first=PS |last2=Koch |first2=C |last3=Sejnowski |first3=TJ |title=Computational Neuroscience |pages=46–55 |editor=Schwartz EL |year=1993 |publisher=MIT Press |isbn=978-0-262-69164-2}}</ref> Najzgodnejše težnje kibernetike so bile precej okorne, saj so možgane obravnavale kot da so le preobleka digitalnega računalnika. Eden takšnih primerov je [[John von Neumann|Neumannova]] knjiga ''Računalnik in možgani'' (''The Computer and the Brain'') iz leta 1958.<ref>{{cite book |title=The Computer and the Brain |year=2000 |publisher=Yale University Press |isbn=978-0-300-08473-3 |last=von Neumann |first=J |last2=Churchland |first2=PM |last3=Churchland |first3=PS |pages=xi – xxiixi–xxii}}</ref> Skozi leta so informacije o električnih odgovorih možganskih celic, ki so jih posneli na živalih, premikale teoretične koncepte v smer večjega realizma.<ref name=CKS1993/>
 
Iznajdba elektronskih računalnikov v 40. letih 20. stoletja in razvoj matematične [[informacijska teorija|informacijske teorije]] sta privedla so odkritja, da se lahko možgane razume kot sisteme, ki procesirajo informacije. Ta koncept je osnova [[kibernetika|kibernetike]]. Omogočil je tudi pojav [[računalniška nevroznanost|računalniške nevroznanosti]].<ref name=CKS1993>{{cite book |chapter=What is computational neuroscience? |last=Churchland |first=PS |last2=Koch |first2=C |last3=Sejnowski |first3=TJ |title=Computational Neuroscience |pages=46–55 |editor=Schwartz EL |year=1993 |publisher=MIT Press |isbn=978-0-262-69164-2}}</ref> Najzgodnejše težnje kibernetike so bile precej okorne, saj so možgane obravnavale kot da so le preobleka digitalnega računalnika. Eden takšnih primerov je [[John von Neumann|Neumannova]] knjiga ''Računalnik in možgani'' (''The Computer and the Brain'') iz leta 1958.<ref>{{cite book |title=The Computer and the Brain |year=2000 |publisher=Yale University Press |isbn=978-0-300-08473-3 |last=von Neumann |first=J |last2=Churchland |first2=PM |last3=Churchland |first3=PS |pages=xi – xxii}}</ref> Skozi leta so informacije o električnih odgovorih možganskih celic, ki so jih posneli na živalih, premikale teoretične koncepte v smer večjega realizma.<ref name=CKS1993/>
 
[[Slika:Model of Cerebellar Perceptron.jpg|thumb|right|Model nevronskega krogotoka malih možganov, kot si ga je zamišljal [[James S. Albus]]]]
 
Bistvo pristopa informacijskega procesiranja je razumeti možgansko funkcijo v pojmih informacijskega toka in izvrševanja [[algoritem|algoritmov]].<ref name=CKS1993/> Eden najbolj vplivnih zgodnjih prispevkov je ''What the frog's eye tells the frog's brain''. Napisan je bil leta 1959. Preverjali so vizualne odgovore nevronov v [[retina|mrežnici]] in optičnem tektumu žab. Zaključili so, da so nekateri tektalni nevroni povezani tako, da kombinirajo elementarne odzive na način, da delujejo kot »detektorji hroščev«.<ref>{{cite journal |title=What the frog's eye tells the frog's brain |journal=Proceedings of the Institute of Radio Engineering |volume=47 |pages=1940–1951 |year=1959 |url=http://jerome.lettvin.info/lettvin/Jerome/WhatTheFrogsEyeTellsTheFrogsBrain.pdf |format=pdf |last=Lettvin |first=JY |last2=Maturana |first2=HR |last3=McCulloch |first3=WS |last4=Pitts |first4=WH}}</ref> Nekaj let kasneje sta [[David H. Hubel|David Hubel]] in [[Torsten Wiesel]] v primarni vidni skorji opic odkrila celice, ki se aktivirajo, ko se ostrorobi objekt premakne čez določeno točko v [[vidno polje|vidnem polju]]. Za to odkrije sta prejela Nobelovo nagrado.<ref>{{cite book| title = Brain and visual perception: the story of a 25-year collaboration| last=Hubel |first=DH |last2=Wiesel |first2=TN| publisher = Oxford University Press US| year = 2005| isbn = 978-0-19-517618-6 |pages=657–704}}</ref> Nadaljnje študije višjih vizualnih področij so odkrile celice, ki zaznavajo [[binokulara dispariteta|binokularno dispariteto]], barvo, gibanje in obliko. Z oddaljevanjem teh področij od primarne vidne skorje se povečuje kompleksnost odgovorov.<ref>{{cite book |title=The Cognitive Neuroscience of Vision |last=Farah |first=MJ |year=2000 |publisher=Wiley-Blackwell |isbn=978-0-631-21403-8 |pages=1–29}}</ref> Druge raziskave možganskih področij, nepovezanih z vidom, so razkrile širok razpon povezav s spominom in nekaterimi abstraktnimi kognitivnimi kategorijami, kot je prostor.<ref>{{cite journal |last=Engel |first=AK |last2=Singer |first2=W |title=Temporal binding and the neural correlates of sensory awareness |journal=Tends in Cognitive Sciences |year=2001 |volume=5 |pages=16–25 |pmid=11164732 |doi=10.1016/S1364-6613(00)01568-0 |issue=1}}</ref>
 
Vrstica 175 ⟶ 151:
 
=== Senzorika ===
 
[[Slika:Hearing mechanics cropped.jpg|thumb|right|Diagram signalnega procesiranja v [[sluh|slušnem sistemu]]]]
Ena primarnih funkcij možganov je pridobivati biološko pomembne informacije iz senzoričnih vnosov. Človeški možgani dobivajo informacije o svetlobi, zvoku, kemični sestavi [[ozračje|ozračja]], [[temperatura|temperaturi]], orientaciji glave, položaju okončin, kemični sestavi krvi. Druge živali lahko imajo tudi dodatne čute, kot je [[svetloba|infrardeči]] [[termoreceptor]] [[kače|kač]], čut za [[magnetno polje]] nekaterih ptičev ali čut za [[električno polje]] nekaterih tipov rib. Nekatere živali so razvile senzorične sisteme na nove načine - netopirji so adaptirali slušni sistem v obliko [[sonar|sonarja]]. Vse senzorične modalitete uvodoma zazna specializirano čutilo, ki prenese signal v možgane.<ref name="hearing" />
 
Ena primarnih funkcij možganov je pridobivati biološko pomembne informacije iz senzoričnih vnosov. Človeški možgani dobivajo informacije o svetlobi, zvoku, kemični sestavi [[ozračje|ozračja]], [[temperatura|temperaturi]], orientaciji glave, položaju okončin, kemični sestavi krvi. Druge živali lahko imajo tudi dodatne čute, kot je [[svetloba|infrardeči]] [[termoreceptor]] [[kače|kač]], čut za [[magnetno polje]] nekaterih ptičev ali čut za [[električno polje]] nekaterih tipov rib. Nekatere živali so razvile senzorične sisteme na nove načine – netopirji so adaptirali slušni sistem v obliko [[sonar|sonarja]]. Vse senzorične modalitete uvodoma zazna specializirano čutilo, ki prenese signal v možgane.<ref name="hearing" />
 
Vsak senzorični sistem se začne s specializiranimi receptorskimi celicami, kot so [[paličnica|paličnice]] v [[mrežnica|mrežnici]] očesa, na vibracijo občutljivi nevroni v [[polž (anatomija)|ušesnem polžu]], na pritisk občutljivi nevroni v [[koža|koži]]. Nevriti senzoričnih receptorjev potekajo do hrbtenjače ali do možganov, kjer prenesejo signal do svojih primarnih senzoričnih jeder. Ta prenesejo informacije v višja senzorična področja. Skozi talamus se signali prenesejo v možgansko skorjo. Tam se s procesiranjem pridobi biološko pomembne podatke. Te se integrira s signali, ki prihajajo iz drugih senzoričnih sistemov.<ref name=hearing>[[#refPrinciples|''Principles of Neural Science'']], Ch. 21</ref>
 
=== Motorični nadzor ===
[[Motorični sistem]]i so področja možganov, ki so neposredno ali posredno vključena v gibanje telesa - v aktivacijo mišic. Razen zunanjih zrkelnih mišic, ki premikajo oko in jih nadzorujejo jedra v mezencefalonu, so vse [[skeletna mišica|skeletne mišice]] v telesu neposredno oživčene z [[motorični nevron|motoričnimi nevroni]] v hrbtenjači in rombencefalonu.<ref>[[#refPrinciples|''Principles of Neural Science'']], Ch. 34</ref> Hrbtenjačne motorične nevrone nadzorujejo živčni krogi, ki so intrinzični za hrbtenjačo, in descendentni vhodi iz možganov. Intrinzični hrbtenjačni krogi izvršujejo mnoge refleksne odgovore in vsebujejo
 
[[Motorični sistem]]i so področja možganov, ki so neposredno ali posredno vključena v gibanje telesa – v aktivacijo mišic. Razen zunanjih zrkelnih mišic, ki premikajo oko in jih nadzorujejo jedra v mezencefalonu, so vse [[skeletna mišica|skeletne mišice]] v telesu neposredno oživčene z [[motorični nevron|motoričnimi nevroni]] v hrbtenjači in rombencefalonu.<ref>[[#refPrinciples|''Principles of Neural Science'']], Ch. 34</ref> Hrbtenjačne motorične nevrone nadzorujejo živčni krogi, ki so intrinzični za hrbtenjačo, in descendentni vhodi iz možganov. Intrinzični hrbtenjačni krogi izvršujejo mnoge refleksne odgovore in vsebujejo
''generatorje vzorcev'' za [[ritem|ritmične]] gibe, kot sta hoja ali plavanje. Descendentne povezave iz možganov omogočajo bolj sofisticiran nadzor.<ref>[[#refPrinciples|''Principles of Neural Science'']], Chs. 36, 37</ref>
 
V možganih je več motoričnih področij, ki se projicirajo neposredno v hrbtenjačo. Na najnižji ravni sta motorični področji v podaljšani hrbtenjači in v mostu. Nadzorujeta stereotipna vedenja kot so hoja, dihanje ali požiranje. Višje so področja mezencefalona, kot je [[rdeče jedro]] (''nucleus ruber''), ki je odgovorno za koordiniranje gibov rok in nog. Najvišja raven je [[primarna motorična skorja]]. To je tkivna proga, ki se nahaja na posteriorni strani čelnega režnja. Primarna motorična skorja pošilja projekcije subkortikalnim motoričnim področjem in skozi [[piramidna proga|piramidno progo]] neposredno v podaljšano hrbtenjačo. Ta neposredna kortikospinalna projekcija omogoča natančni hoteni nadzor detajlov gibov. Druga možganska področja, povezana z motoriko, izkazujejo drugotne učinke preko projiciranja v primarna motorična področja. Najpomembnejša drugotna področja so premotorična skorja, bazalni gangliji in mali možgani.<ref>[[#refPrinciples|''Principles of Neural Science'']], Ch. 33</ref>
 
{| class="wikitable" style="margin: 1em auto 1em auto;"
|+ Glavna področja, ki nadzorujejo gibanje
Vrstica 224 ⟶ 196:
 
=== Budnost ===
 
Eden očitnejših vidikov vedenja vsake živali je dnevni cikel med spanjem in budnostjo. Budnost in zavedanje usmerja velika mreža možganskih področij.<ref name="Principles45">[[#refPrinciples|''Principles of Neural Science'']], Ch. 45</ref>
 
Vrstica 235 ⟶ 206:
 
=== Homeostaza ===
 
[[Slika:LocationOfHypothalamus.jpg|thumb|right|Presek človeške glave, označen je hipotalamus.]]
 
Vrstica 244 ⟶ 214:
 
=== Motivacija ===
 
[[Slika:Basal ganglia.svg|thumb|right|350px|Deli bazalnih ganglijev, prikazani na prerezu človeških možganov. Modro: [[kavdatno jedro]] in [[putamen]]. Zeleno: [[globus pallidus]]. Rdeče: [[subtalamično jedro]]. Črno: [[črna substanca]].]]
Po razvojni teoriji so živali genetsko programirane tako, da skušajo preživeti in imeti potomce. Na ravni posamezne živali se cilja genetske prilagodljivosti prevedeta v skupek vedenja, ki omogoča preživetje. Žival išče hrano, vodo, zavetišče in partnerja.<ref>{{cite journal |last=Chiel |first=HJ |last2=Beer |first2=RD |title=The brain has a body: adaptive behavior emerges from interactions of nervous system, body, and environment |journal=Trends in Neurosciences |year=1997 |volume=20 |pages=553–557 |doi=10.1016/S0166-2236(97)01149-1 |pmid=9416664 |issue=12}}</ref> Motivacijski sistem možganov nadzoruje trenutno stanje zadovoljitve teh ciljev. Ko se pojavi potreba, aktivira vedenje, da bi jo zadovoljil. Motivacijski sistem večinoma deluje preko mehanizma kaznovanja in nagrajevanja. Ko določenemu vedenju sledijo ugodne posledice, se aktivira mehanizem za nagrado. To vključuje možganske strukturne spremembe. Te povzročijo, da se določeno vedenje ponovi vsakič, ko se pojavi enaka situacija. Kadar vedenju sledijo neprijetne posledice, se aktivira sistem kaznovanja. Ko se ponovi enaka situacija, se določeno vedenje zavre zaradi strukturnih možganskih sprememb.<ref>{{cite journal |last=Berridge |first=KC |title=Motivation concepts in behavioral neuroscience |journal=Physiology & Behavior |year=2004 |volume=8 |pages=179–209 |pmid=15159167 |issue=2 |doi=10.1016/j.physbeh.2004.02.004}}</ref>
 
Možgani vseh živali, ki so jih doslej proučevali, imajo mehanizem kaznovanja in nagrajevanja. Celo črvi in žuželke lahko spremenijo svoje vedenje, ko iščejo hrano ali se izogibajo nevarnosti.<ref>{{cite journal |title=An elegant mind: learning and memory in ''Caenorhabditis elegans'' |journal=Learning and Memory |year=2010 |volume=17 |pages=191–201 |url=http://learnmem.cshlp.org/content/17/4/191.long |last=Ardiel |first=EL |last2=Rankin |first2=CH |doi=10.1101/lm.960510 |pmid=20335372 |issue=4}}</ref> Pri vretenčarjih se mehanizem kaznovanja in nagrajevanja izvršuje v posebnem možganskem področju, katerega center so bazalni gangliji. To je skupek medsebojno povezanih področij na bazi prozencefalona.<ref name=Grillner2005/> Bazalni gangliji so center odločanja in izkazujejo stalni zaviralni nadzor nad večino motoričnih možganskih sistemov. Ko sprostijo zaviranje, lahko motorični sistem izvede načrtovano dejanje. Nagrajevanje in kaznovanje delujeta preko spreminjanja razmerja med vnosi, ki jih prejemajo bazalni gangliji in med odločitvami - signali, ki jih oddajajo. Mehanizem nagrajevanja je bolje razumljen kot mehanizem kaznovanja. Vlogo slednjega pri zlorabi različnih snovi bo treba še raziskati. Raziskave kažejo, da je najpomembnejši [[dopamin]]. Snovi, ki povzročajo odvisnost (na primer [[kokain]], [[amfetamin]]i, [[nikotin]]), dvigujejo raven dopamina ali okrepijo njegove učinke v možganih.<ref>{{cite journal |title=Addiction and the brain: the neurobiology of compulsion and its persistence |journal=Nature Reviews Neuroscience |year=2001 |volume=2 |pages=695–703 |last=Hyman |first=SE |last2=Malenka |first2=RC |doi=10.1038/35094560 |pmid=11584307 |issue=10}}</ref>
 
=== Učenje in spomin ===
 
Skoraj vse živali so zmožne na podlagi izkušnje prilagajati svoje vedenje, tudi najbolj primitivni tipi črvov. Vedenje določa možganska aktivnost, zato spremembe vedenja izhajajo iz sprememb v možganih. Teoretiki so že od [[Santiago Ramón y Cajal|Cajalovega]] obdobja trdili, da sta učenje in spomin posledica sprememb sinaptičnih povezav.<ref>{{cite journal | last = Ramón y Cajal |first=S | title = The Croonian Lecture: La Fine Structure des Centres Nerveux | journal = Proceedings of the Royal Society of London | volume = 55 | issue = 331–335 | pages = 444–468 | year = 1894 | doi = 10.1098/rspl.1894.0063 }}</ref> Do leta 1970 je teoriji o sinaptični plastičnosti manjkal eksperimentalni dokaz. Leta 1971 sta Tim Bliss in Terje Lømo objavila članek o pojavu, ki ga danes imenujejo [[dolgoročna potenciacija]]. Članek je prinašal jasen dokaz o sinaptičnih spremembah, ki so se zgodile zaradi aktivnosti nevronov in so trajale vsaj nekaj dni.<ref>{{cite journal | last=Lømo |first=T| title=The discovery of long-term potentiation | journal=Phil. Trans. Roy. Soc. London B (Biological Sciences) | volume=358 | issue=1432 | year=2003 | pages=617–620 |pmid=12740104 | doi=10.1098/rstb.2002.1226 | pmc=1693150}}</ref> Odkar je tehnični napredek olajšal eksperimentalno delo, so izvedli več tisoč študij, da bi razjasnili mehanizem sinaptičnih sprememb in razkrili druge tipe z aktivnostjo induciranih sinaptičnih sprememb v različnih možganskih področjih, vključno z možgansko skorjo, hipokampusom, bazalnimi gangliji in malimi možgani.<ref>{{cite journal |last=Malenka |first=R |last2=Bear |first2=M |title=LTP and LTD: an embarrassment of riches |journal=Neuron |volume=44 |issue=1 |pages=5–21 |year=2004 |pmid=15450156 |doi=10.1016/j.neuron.2004.09.012}}</ref>
 
Vrstica 267 ⟶ 235:
 
== Razvoj ==
 
[[Slika:6 week embryo brain.jpg|thumb|right|300px|Človeški zarodek v šestem tednu razvoja]]
Razvoj možganov poteka v več zaporednih fazah.<ref name=PurvesLichtmanCh1>[[#refPurvesLichtman|''Principles of Neural Development'']], Ch. 1</ref> Možgani spreminjajo svojo obliko iz preproste izbokline na sprednjem delu nevralne cevi v najzgodnejšem embrionalnem obdobju do celostnega sistema področij in povezav. Nevroni nastajajo v posebnih področjih, ki vsebujejo [[zarodna celica|zarodne celice]] in nato migrirajo skozi tkiva, da dosežejo svoje dokončno mesto. Ko se namestijo, njihovi nevriti vzniknejo in se usmerjajo skozi možgane. Spotoma se vejijo in razširjajo, vse dokler ne dosežejo svojih tarč in ustvarijo sinaptičnih povezav. Nevroni in sinapse v zgodnjih obdobjih v več predelih živčevja nastanejo v presežku. Odvečni se nato odstranijo.<ref>[[#refPurvesLichtman|''Principles of Neural Development'']], Ch. 4</ref>
Vrstica 284 ⟶ 251:
 
== Raziskovanje ==
 
[[Slika:EEG mit 32 Electroden.jpg|thumb|upright|Preiskovanka z elektrodami za snemanje [[EEG]]-ja]]
[[Nevroznanost]] obsega vse pristope, ki hočejo razumeti možgane in ostalo živčevje.<ref>[[#refPrinciples|''Principles of Neural Science'']], Ch. 1</ref> [[Psihologija]] hoče razumeti um in vedenje. [[Nevrologija]] je veja medicine, ki [[diagnoza|diagnosticira]] in zdravi bolezni živčevja. Možgane proučuje tudi [[psihiatrija]], ki raziskuje, preprečuje in zdravi [[duševna motnja|duševne motnje]].<ref>{{cite book| last = Storrow| first = HA| year = 1969| title = Outline of Clinical Psychiatry| publisher = Appleton-Century-Crofts| url=http://books.google.com/books?ei=pQ-ZTtmvG7TOiAK09rgn |pages=27–30}}</ref> [[Kognitivna znanost]] poskuša združiti nevroznanost in psihologijo z drugimi področji, ki se ukvarjajo z možgani, kot sta [[računalništvo]] ([[umetna inteligenca]]) in filozofija.<ref>{{cite web |last=Thagard |first=P |url=http://plato.stanford.edu/archives/fall2008/entries/cognitive-science/ |title=Cognitive Science |publisher=The Stanford Encyclopedia of Philosophy |year=2008 |editor=Zalta, EN |accessdate=2011-10-14}}</ref>
Vrstica 292 ⟶ 258:
Nevrofiziologi študirajo kemične, [[farmakologija|farmakološke]] in električne lastnosti možganov. Njihova osnovna orodja so kemične učinkovine in snemalne naprave. Tisoče eksperimentalno razvitih snovi vpliva na živčevje, nekatere na visoko specifične načine. Posnetke možganske aktivnosti pridobivajo preko elektrod. Te so lahko prilepljene na lasišče (na primer pri elektroencefalografiji), lahko pa so vstavljene v možgane živali. Slednje omogoča zunajcelično snemanje, ki lahko zazna akcijske potenciale, ki jih prožijo posamezni nevroni.<ref>{{cite book| last = Dowling| first = JE| title = Neurons and Networks| publisher = Harvard University Press| year = 2001| isbn = 978-0-674-00462-7| pages =15–24 }}</ref> Možgani nimajo receptorjev za bolečino, zato je na budnih živalih mogoče izvajati te meritve, ne da bi jim povzročili bolečino. Enako tehniko včasih uporabljajo za študij možganske aktivnosti pri bolnikih z neobvladljivo epilepsijo. Poslužijo se je za ugotavljanje možganskega področja, odgovornega za epileptične napade.<ref>{{cite book| last=Wyllie| first = E| last2= Gupta |first2=A |last3=Lachhwani |first3=DK| title=The Treatment of Epilepsy: Principles and Practice| year=2005| publisher = Lippincott Williams & Wilkins| isbn = 978-0-7817-4995-4 |chapter=Ch. 77}}</ref> Za študij možganske aktivnosti so uporabne tudi metode funkcionalne slikovne diagnostike. Večinoma se jih uporablja na ljudeh, saj mora biti preiskovanec zavesten in mirujoč dlje časa. Velika prednost slikovnih metod je, da so neinvazivne.<ref>{{cite book |last=Laureys |first=S |last2=Boly |first2=M |last3=Tononi |first3=G |chapter=Functional neuroimaging |title=The Neurology of Consciousness: Cognitive Neuroscience and Neuropathology |editors=Laureys S, Tononi G |publisher=Academic Press |year=2009 |isbn=978-0-12-374168-4 |pages=31–42}}</ref>
 
[[Slika:BCI.jpg|thumb|left|300px|Zasnova eksperimenta, v katerem so možgansko aktivnost opice uporabili za vodenje robotske roke<ref>{{cite journal |title=Learning to Control a Brain – MachineBrain–Machine Interface for Reaching and Grasping by Primates |journal=PLoS Biology |year=2003 |volume=1 |pages=193–208 |pmc=261882 |last=Carmena |first=JM |issue=2 |pmid=14624244 |doi=10.1371/journal.pbio.0000042 |author-separator=, |display-authors=1 |last2=Lebedev |first2=Mikhail A. |last3=Crist |first3=Roy E. |last4=O'Doherty |first4=Joseph E. |last5=Santucci |first5=David M. |last6=Dimitrov |first6=Dragan F. |last7=Patil |first7=Parag G. |last8=Henriquez |first8=Craig S. |last9=Nicolelis |first9=Miguel A. L.}}</ref>]]
Drug pristop k možganski funkciji je študij posledic poškodb določenih možganskih področij. Čeprav so zavarovani z lobanjo in možganskimi ovojnicami, obliti z likvorjem in jih od krvi ločuje krvno-možganska pregrada, so zaradi svoje občutljivosti dovzetni za številne bolezni in več tipov poškodb. Pri človeku so bili učinki [[možganska kap|možganske kapi]] in drugih tipov možganskih poškodb ključni vir informacij o delovanju možganov. Te informacije je navadno težko interpretirati, saj narave poškodbe ni mogoče eksperimentalno nadzorovati. Na živalih, običajno podganah, uporabljajo elektrode ali lokalno injicirajo snovi, da izzovejo natančen vzorec poškodbe. Nato analizirajo posledice.<ref>{{cite book| last = Kolb| first = B| last2 = Whishaw |first2=I| title = Fundamentals of Human Neuropsychology| year = 2008| publisher = Macmillan| isbn = 978-0-7167-9586-5 |chapter=Ch. 1}}</ref>
 
Vrstica 300 ⟶ 266:
 
== Zgodovina ==
 
[[Slika:Descartes-reflex.JPG|thumb|right|150px|[[Rene Descartes|Descartesova]] ilustracija, kako možgani izvedejo refleksni odgovor]]
Zgodnji filozofi se niso mogli zediniti, ali je sedež duše v možganih ali v srcu. [[Aristotel]] je trdil, da je v srcu in menil, da je funkcija možganov predvsem hlajenje krvi. [[Demokrit]], utemeljitelj [[atom]]ske teorije snovi, je predlagal tridelno dušo - z intelektom v glavi, čustvi v srcu in poželenjem blizu jeter.<ref name=Finger14>{{cite book| last = Finger| first = S| title = Origins of Neuroscience| year = 2001| publisher = Oxford University Press| isbn = 978-0-19-514694-3 |pages=14–15}}</ref> Hipokrat, ''oče medicine'', je nedvoumno trdil, da so to možgani. V svoji razpravi o epilepsiji je zapisal:
 
{{citatni blok|Morali bi vedeti, da le iz možganov prihajajo veselje, radost, smeh in razvedrilo ter trpljenje, žalost, potrtost in žalovanje. Isti organ povzroči, da smo neprištevni in [[delirij|delirantni]], da nas napadajo strahovi in groza - nekateri podnevi, drugi ponoči. Tudi sanje, tavanje in neustrezne skrbi, preziranje trenutnih okoliščin, zanemarjanje in nespretnost. Vse to prihaja iz možganov, kadar niso zdravi.|Hipokrat: ''O sveti bolezni''<ref name=Hippocrates>{{cite book| last=Hippocrates| title=On the Sacred Disease| year=400 BCE| url= http://classics.mit.edu/Hippocrates/sacred.html| others=Francis Adams}}</ref>}}
 
[[Slika:1543,AndreasVesalius'Fabrica,BaseOfTheBrain.jpg|thumb|left|upright|150px|Ilustracija iz [[Andreas Vesalius|Vesaliusovega dela]] ''[[De humani corporis fabrica]]'', objavljenega leta 1543, ki prikazuje bazo človeških možganov, vključno z optično kiazmo, malimi možgani in olfaktornim bulbusom]]
Vrstica 324 ⟶ 289:
{{Wikislovar|možgani|Možgani}}
{{kategorija v Zbirki|Brain}}
 
* [http://brainmuseum.org/ Brain Museum], primerjalna zbirka možganov sesalcev
* [http://braininfo.rprc.washington.edu BrainInfo], nevroanatomska zbirka podatkov
Vrstica 332 ⟶ 296:
 
{{zvezdica}}
 
[[Kategorija:Možgani| ]]
[[Kategorija:Živčevje]]