Bicentrični mnogokotnik: razlika med redakcijama

m
dp+
m (dp)
m (dp+)
| <math>a \!\, </math>
|-
| [[enakostranični trikotnik|3]]
| 3
| <math> \frac{R}{2} = \frac{a\sqrt{3}}{6} \!\, </math>
| <math> 2r = \frac{a\sqrt{3}}{3} \!\, </math>
| <math> 2r\sqrt{3} = R\sqrt{3} \!\, </math>
|-
| [[kvadrat (geometrija)|4]]
| 4
| <math> \frac{R\sqrt{2}}{2} = \frac{a}{2} \!\, </math>
| <math> r\sqrt{2} = \frac{a\sqrt{2}}{2} \!\, </math>
| <math> 2r = R\sqrt{2} \!\, </math>
|-
| [[petkotnik|5]]
| 5
| <math> \frac{R}{4}\left(\sqrt{5}+1\right) = \frac{a}{10}\sqrt{25+10\sqrt{5}} \!\, </math>
| <math> r\left(\sqrt{5}-1\right) = \frac{a}{10}\sqrt{50+10\sqrt{5}} \!\, </math>
| <math> 2r\sqrt{5-2\sqrt{5}} = \frac{R}{2}\sqrt{10-2\sqrt{5}} \!\, </math>
|-
| [[šestkotnik|6]]
| 6
| <math> \frac{R}{2}\sqrt{3} = \frac{a\sqrt{3}}{2} \!\, </math>
| <math> \frac{2r\sqrt{3}}{3} = a \!\, </math>
| <math> \frac{2r\sqrt{3}}{3} = R \!\, </math>
|-
| [[osemkotnik|8]]
| <math> \frac{R\left(1+\sqrt{2}\right)}{\sqrt{\left(4+2\sqrt{2}\right)}} = \frac{a}{2}\left(1+\sqrt{2}\right) \!\, </math>
| <math> \frac{R\sqrt{\left(4+2\sqrt{2}\right)}}{1+\sqrt{2}} = \frac{a}{2}\sqrt{\left(4+2\sqrt{2}\right)} \!\, </math>
| <math> \frac{2r}{1+\sqrt{2}} = \frac{2R}{\sqrt{\left(4+2\sqrt{2}\right)}} \!\, </math>
|}