Odpŕta mnóžica je v matematiki množica, ki ne vsebuje roba. Nasprotje odprte množice je zaprta množica - to je množica, ki vsebuje vse robne točke.

Odprte množice v topološkem prostoru

uredi

Stroga matematična definicija odprte množice je neposredno povezana s pojmoma topološki prostor oziroma topologija prostora. V topološkem prostoru odprta (pa tudi zaprta) množica ni definirana kot množica z neko eksplicitno navedeno lastnostjo, pač pa je določeno le, kakšne lastnosti povezujejo odprte množice:

 
Zgled: točke (x, y), za katere velja x2 + y2 = r2, so obarvane modro. Točke (x, y), za katere velja x2 + y2 < r2, so pobarvane rdeče. Rdeče točke tvorijo odprto množico. Unija rdečih in modrih točk je zaprta množica
  • prazna množica in celotna množica X sta obe odprti množici.
  • unija poljubnega števila (lahko tudi neskončno mnogo) odprtih množic je spet odprta množica.
  • presek končnega števila odprtih množic je spet odprta množica.

Množico vseh odprtih množic imenujemo tudi topologija danega topološkega prostora.

Zgledi

uredi

Zgled odprte množice v enorazseženem prostoru (na premici) je odprti interval - to je interval, ki ne vsebuje krajišč.