Maclaurinova trisektrisa

kubična ravninska krivulja z lastnostjo trisekstrike

Maclaurinova trisektrisa je enačba tretje stopnje za katero je značilna delitev kota na tri dele. Krivulja je geometrijsko mesto točk presečišča dveh premic, ki se enakomerno vrtita okrog dveh ločenih točk tako, da je stopnja vrtenja 1 : 3, pri tem pa premica na začetku sovpada s smerjo, ki jo določata točki.

Maclaurinova trisektrisa s prikazom delitve kota na tri dele.

Posplošitev te vrste se imenuje Maclaurinova sektrisa.

Krivulja se imenuje po škotskem matematiku Colinu Maclaurinu (1698 – 1746), ki je krivuljo proučeval v letu 1742.

Krivulja je članica družine de Sluzejevih konhoid.

Enačba krivulje v kartezičnih koordinatah

uredi

Enačba krivulje v katezičnem koordinatnem sistemu je : .

Enačba krivulje v polarnih koordinatah

uredi

Enačba krivulje v polarnem koordinatnem sistemu je: 

Parametrična oblika krivulje[1]

uredi

Parametrična oblika krivulje je:

 
 

Delitev kota na tri dele

uredi

Način delitve kota na tri dele je prikazan na sliki zgoraj.

Značilnosti

uredi

Krivulja seka x-os pri  . Premica   je asimptota.

Povezave z drugimi krivuljami

uredi

Maclaurinovo trisektriso se lahko definira kot stožnico na tri načine:

 
 
in premice   glede na izhodišče.
 

Razen tega velja še:

Sklici

uredi

Zunanje povezave

uredi
  • Weisstein, Eric Wolfgang. »Maclaurin Trisectrix«. MathWorld.
  • Maclaurinova trisektrisa na MacTutor (angleško)
  • Maclaurinova trisektrisa Arhivirano 2008-08-08 na Wayback Machine. na 2dcurves (angleško)
  • Macaurinova trisektrisa na Visual Dictionary of Special Plane curves (angleško)
  • Maclaurinova trisektrisa (francosko)
  • Sektrisa (francosko)
  • Trisekcija kota Arhivirano 2013-11-04 na Wayback Machine. (angleško)