Fresnelove enačbe
Fresnelove enačbe opisujejo obnašanje svetlobe (elektromagnetnega valovanja) na prehodu med dvema snovema z različnima lomnima količnikoma. Enačbe opisujejo amplitudo odbitega in prepuščenega dela elektromagnetnih valov.
Enačbe je vpeljal francoski fizik in izumitelj Augustin-Jean Fresnel (1788–1827).
Fizikalne osnove
urediKadar se svetloba giblje iz sredstva z lomnim količnikom v drugo sredstvo z lomnim količnikom , se del svetlobe odbije, del pa se lomi, in prehaja v drugo sredstvo. Lom svetlobe se izvede po običajnem lomnem zakonu. Koliki del svetlobe se odbije, pove odbojnost oziroma koeficient odbojnosti sredstva (oznaka ), del, ki pa se prepusti oziroma preide v drugo sredstvo, pa opisuje prepustnost in koeficient prepustnosti (oznaka ). Velikost obeh koeficientov je odvisna od polarizacije vpadne svetlobe. Koeficienta sta različna za svetlobo, ki je polarizirana v ravnini pravokotni na vpadno ravnino, in za svetlobo, ki je polarizirana v ravnini vzporedni vpadni ravnini.
Koeficient odbojnosti za svetlobo, ki je polarizirana pravokotno na vpadno ravnino, je enak:
kjer je:
- lomni količnik prvega sredstva
- lomni količnik drugega sredstva
- vpadni kot
- odbojni kot
- lomni kot
Podobno je koeficient odbojnosti za svetlobo, ki je polarizirana vzporedno z vpadno ravnino:
kjer so oznake enake kot za s polarizirano svetlobo (zgoraj).
Različni avtorji navajajo različne obrazce, ki so na prvi pogled drugačni.
Pri tem sta pripadajoča koeficienta prepustnosti določena z in [1].
Kadar pa je vpadajoča svetloba nepolarizirana, je koeficient odbojnosti enak .
Pri določenem kotu za dani in pade na nič. V tem primeru se p polarizirana svetloba v celoti lomi. Ta kot se imenuje Brewstrov kot. Kadar se svetloba giblje iz optično manj gostega sredstva (lomni količnik ) v bolj gosto sredstvo (lomni količnik ) (to pomeni, da je ), se nad nekim vpadnim kotom (mejni kot) vsa svetloba odbije ( ). Ta pojav se imenuje popolni odboj.
Uporaba
urediFresnelove enačbe se uporabljajo pri izračunu jakosti odbitega signala v:
- optičnem vlaknu,
- merilniku OTDR.
Sklici
uredi- ↑ Hecht (1987), str. 102.
Viri
uredi- Hecht, Eugene (1987), Optics (2. izd.), Addison Wesley, ISBN 0-201-11609-X
Zunanje povezave
uredi- Fresnelove enačbe na MathWorld (angleško)
- Opis Fresnelovih enačb (slovensko)